Difference between revisions of "Published Papers"

From Hyrel3D
Jump to navigation Jump to search
Line 7: Line 7:
== Count ==
== Count ==


284 documents as of 12 Sep 2021.
486 documents as of 8 December, 2023.


== Non-Traditional Manufacturing ==
== '''Non-Traditional Manufacturing (NTM)''' ==


Including Antennas, Sensors, Inductors, and Circuits; Combined Manufacturing Techniques; Electro-Spinning or Electro-Melt-Spinning or Melt Electro-Writing (MEW); also printing with Embedded Fibers and combining FDM with DIW or MEW.
Including:
==== Published in 2023 ====
* Antennas
* Sensors
* Inductors
* Circuits
* Electro-Spinning  
* Electro-Melt-Spinning
* Melt Electro-Writing (MEW)
* 4D Printing
* Shape Memory Polymers
* Nanostructures
* Micro-Encapsulated Phase-Changing Materials (MEPCM)
* Printing with Embedded Fibers
* And combining two or more additive manufacturing methods in a single build.
 
== NTM, 2023 ==


*[https://onlinelibrary.wiley.com/doi/pdf/10.1002/smll.202206847 3D Printing-Assisted Self-Assembly to Bio-Inspired Bouligand Nanostructures] by a team from the [https://sc.edu/study/colleges_schools/engineering_and_computing/departments/chemical_engineering/index.php Department of Chemical Engineering, University of South Carolina]
*[https://www.nature.com/articles/s41467-023-36214-8 Conductive and Elastic Bottlebrush Elastomers for Ultrasoft Electronics] by a team from a team from a variety of departments of the [https://www.utoronto.ca/ University of Toronto]
* [https://scholarworks.utep.edu/cgi/viewcontent.cgi?article=4659&context=open_etd Processes & Toolchain For Automation Of Hybrid Direct-Write 3D Printing], a PhD thesis submitted to the [https://www.utep.edu/engineering/ece/ Department of Electrical and Computer Engineering, University of Texas at El Paso]
* [https://www.sciencedirect.com/science/article/pii/S0014305723005268 Vitrimer Chemistry for 4D Printing Formulation] by a team from [https://sut.ac.ir/en/ Sahand University of Technology, Iran], [https://www.ntu.ac.uk/ Nottingham Trent University, UK], and [https://www.deakin.edu.au/ Deakin University, Geelong, Australia]
* [https://www.sciencedirect.com/science/article/pii/S0014305723005268 Vitrimer Chemistry for 4D Printing Formulation] by a team from [https://sut.ac.ir/en/ Sahand University of Technology, Iran], [https://www.ntu.ac.uk/ Nottingham Trent University, UK], and [https://www.deakin.edu.au/ Deakin University, Geelong, Australia]
* [https://onlinelibrary.wiley.com/doi/pdf/10.1002/admt.202300188 Laser-Induced Graphene Electrodes for OrganicElectrochemical Transistors (OECTs)] by a team from [https://lassonde.yorku.ca/eecs/ Department of Electrical Engineering and Computer Science, Lassonde School of Engineering, York University, Toronto]
* [https://onlinelibrary.wiley.com/doi/pdf/10.1002/admt.202300188 Laser-Induced Graphene Electrodes for OrganicElectrochemical Transistors (OECTs)] by a team from [https://lassonde.yorku.ca/eecs/ Department of Electrical Engineering and Computer Science, Lassonde School of Engineering, York University, Toronto]
Line 38: Line 49:
* [https://www.nature.com/articles/s41467-023-36214-8 Conductive and Elastic Bottlebrush Elastomers for Ultrasoft Electronics] by a team from a team from a variety of departments of the [https://www.utoronto.ca/ University of Toronto]
* [https://www.nature.com/articles/s41467-023-36214-8 Conductive and Elastic Bottlebrush Elastomers for Ultrasoft Electronics] by a team from a team from a variety of departments of the [https://www.utoronto.ca/ University of Toronto]
* [https://scholarworks.utep.edu/cgi/viewcontent.cgi?article=4659&context=open_etd Processes & Toolchain For Automation Of Hybrid Direct-Write 3D Printing], a PhD thesis submitted to the [https://www.utep.edu/engineering/ece/ Department of Electrical and Computer Engineering, University of Texas at El Paso]
* [https://scholarworks.utep.edu/cgi/viewcontent.cgi?article=4659&context=open_etd Processes & Toolchain For Automation Of Hybrid Direct-Write 3D Printing], a PhD thesis submitted to the [https://www.utep.edu/engineering/ece/ Department of Electrical and Computer Engineering, University of Texas at El Paso]
==== Published in 2022 ====


*[https://scholarworks.uark.edu/cgi/viewcontent.cgi?article=1110&context=meeguht Enhancing Stability of High-Nickel Cathodes for Lithium-Ion Batteries through Additive Manufacturing of Cathode StructureBatteries through Additive Manufacturing] an Honors Thesis submitted to the [https://mechanical-engineering.uark.edu/ Mechanical Engineering Department of the University of Arkansas]
== NTM, 2022 ==
 
* [https://onlinelibrary.wiley.com/doi/10.1002/adfm.202201766 Direct Ink Writing of 4D Structural Colors] by a team from [https://www.tue.nl/en/research/research-groups/stimuli-responsive-functional-materials-devices/ Laboratory of Stimuli-Responsive Functional Materials and Devices (SFD), Department of Chemical Engineering and Chemistry] and [https://www.tue.nl/en/research/institutes/institute-for-complex-molecular-systems/ Institute for Complex Molecular Systems (ICMS)] of the [https://www.tue.nl/en Eindhoven University of Technology (TU/e)]
* [https://onlinelibrary.wiley.com/doi/full/10.1002/smll.202200951 4D Printing of Extrudable and Degradable Poly(Ethylene Glycol) Microgel Scaffolds for Multidimensional Cell Culture] by a team from the [https://www.colorado.edu/chbe/ Department of Chemical and Biological Engineering] and the [https://www.colorado.edu/biofrontiers/ BioFrontiers Institute] of the [https://www.colorado.edu/ University of Colorado - Boulder] and the [https://medschool.cuanschutz.edu/mstp Medical Scientist Training Program, School of Medicine, University of Colorado - Anschutz Medical Campus]
* [https://iopscience.iop.org/article/10.1149/10916.0003ecst/meta Structured 3D Printed Dry ECG Electrodes Using Copper Based Filament] by a team from [https://www.kaust.edu.sa/en King Abdullah University of Science and Technology], [https://www.yachaytech.edu.ec/en/ Yachay Tech Universiy], and [https://www.kau.edu.sa/home_english.aspx King Abdulaziz University]
* [https://www.mdpi.com/2072-666X/13/10/1606/pdf Extrusion-Based 3D Printing of Stretchable Electronic Coating for Condition Monitoring of Suction Cups] by a team from the [https://lgef.insa-lyon.fr/en/ Laboratoire de Génie Electrique et Ferroélectricité, Institut National des Sciences Appliquées, Université de Lyon] and the [https://hybria.fr/en/home/ Hybria Institute of Business and Technologies]
* [https://scholarworks.uark.edu/cgi/viewcontent.cgi?article=1110&context=meeguht Enhancing Stability of High-Nickel Cathodes for Lithium-Ion Batteries through Additive Manufacturing of Cathode StructureBatteries through Additive Manufacturing] an Honors Thesis submitted to the [https://mechanical-engineering.uark.edu/ Mechanical Engineering Department of the University of Arkansas]
* [https://www.spiedigitallibrary.org/conference-proceedings-of-spie/12042/120420W/Additively-manufactured-unimorph-dielectric-elastomer-actuators-with-ferroelectric-particles-for/10.1117/12.2613128.short?SSO=1 Additively Manufactured Unimorph Dielectric Elastomer Actuators with Ferroelectric Particles for Enhanced Low-Voltage Actuation] by a team from the [https://daytonabeach.erau.edu/college-engineering/aerospace Aerospace Engineering Department of Embry-Riddle Aeronautical Univeristy]
* [https://www.spiedigitallibrary.org/conference-proceedings-of-spie/12042/120420W/Additively-manufactured-unimorph-dielectric-elastomer-actuators-with-ferroelectric-particles-for/10.1117/12.2613128.short?SSO=1 Additively Manufactured Unimorph Dielectric Elastomer Actuators with Ferroelectric Particles for Enhanced Low-Voltage Actuation] by a team from the [https://daytonabeach.erau.edu/college-engineering/aerospace Aerospace Engineering Department of Embry-Riddle Aeronautical Univeristy]
* [https://mdpi-res.com/d_attachment/polymers/polymers-14-01351/article_deploy/polymers-14-01351-v2.pdf Innovation in Additive Manufacturing Using Polymers: A Survey on the Technological and Material Developments], a review of "the most recent advances from technological and physico-chemical perspectives to improve several remaining issues in polymeric materials’ additive manufacturing", by a team from [https://www.uss.cl/ Universidad San Sebastián], [https://www.utem.cl/ Universidad Tecnológica Metropolitana, Santiago], and [https://www.csic.es/en/investigation/institutes-centres-units/institute-polymer-science-and-technology Instituto de Ciencia y Tecnología de Polímeros-Consejo Superior de Investigaciones Científicas], Chile
* [https://mdpi-res.com/d_attachment/polymers/polymers-14-01351/article_deploy/polymers-14-01351-v2.pdf Innovation in Additive Manufacturing Using Polymers: A Survey on the Technological and Material Developments], a review of "the most recent advances from technological and physico-chemical perspectives to improve several remaining issues in polymeric materials’ additive manufacturing", by a team from [https://www.uss.cl/ Universidad San Sebastián], [https://www.utem.cl/ Universidad Tecnológica Metropolitana, Santiago], and [https://www.csic.es/en/investigation/institutes-centres-units/institute-polymer-science-and-technology Instituto de Ciencia y Tecnología de Polímeros-Consejo Superior de Investigaciones Científicas], Chile


==== Published in 2021 ====
== NTM, 2021 ==


*[https://www.sciencedirect.com/science/article/abs/pii/S235249282100951X 4D-Actuators by 3D-Printing Combined with Water-based Curing] by a team from [https://www.hereon.de/institutes/active_polymers/index.php.en Institute of Active Polymers, Helmholtz-Zentrum Hereon]
*[https://onlinelibrary.wiley.com/doi/abs/10.1002/adfm.202106843 4D Printing of Engineered Living Materials] by a team from several departments at [https://www.tamu.edu/ Texas A&M University
* [https://digitalcommons.georgiasouthern.edu/cgi/viewcontent.cgi?article=3539&context=etd Design and Development of Soft Earthworm Robot Driven by Fibrous Artificial Muscles] a thesis presented to [https://www.georgiasouthern.edu/ Georgia Southern University]
* [https://digitalcommons.georgiasouthern.edu/cgi/viewcontent.cgi?article=3539&context=etd Design and Development of Soft Earthworm Robot Driven by Fibrous Artificial Muscles] a thesis presented to [https://www.georgiasouthern.edu/ Georgia Southern University]
* [https://pubs.acs.org/doi/abs/10.1021/acsabm.1c00949 Comprehensive Review on Design and Manufacturing of Bio-scaffolds for Bone Reconstruction] by a team from [https://vit.ac.in/schools/smec School of Mechanical Engineering Vellore Institute of Technology, India]
* [https://pubs.acs.org/doi/abs/10.1021/acsabm.1c00949 Comprehensive Review on Design and Manufacturing of Bio-scaffolds for Bone Reconstruction] by a team from [https://vit.ac.in/schools/smec School of Mechanical Engineering Vellore Institute of Technology, India]
Line 60: Line 78:
* [https://cecas.clemson.edu/~jbostwi/wp-content/uploads/2021/02/wtcb2021jmp.pdf Enhanced Wettability in Ultrasonic-Assisted Soldering to Glass Substrates], by a team from the [https://www.clemson.edu/cecas/departments/me/ Department of Mechanical Engineering, Clemson University]
* [https://cecas.clemson.edu/~jbostwi/wp-content/uploads/2021/02/wtcb2021jmp.pdf Enhanced Wettability in Ultrasonic-Assisted Soldering to Glass Substrates], by a team from the [https://www.clemson.edu/cecas/departments/me/ Department of Mechanical Engineering, Clemson University]


== NTM, 2020 ==


==== Published in 2020 ====
* [https://www.sciencedirect.com/science/article/abs/pii/S1742706120307650 4D Printing of Shape-memory Polymeric Scaffolds for Adaptive Biomedical Implantation] by a team from the [http://catalog.missouri.edu/undergraduategraduate/collegeofengineering/mechanicalandaerospaceengineering/ Department of Mechanical and Aerospace Engineering], the [https://medicine.missouri.edu/departments/surgery Department of Surgery], the [https://foodscience.missouri.edu/ Food Science Program, Division of Food Systems & Bioengineering], and the [https://engineering.missouri.edu/academics/bbce/ Department of Biomedical, Biological & Chemical Engineering] of the [https://missouri.edu/ University of Missouri]
 
* [https://dl.acm.org/doi/abs/10.1145/3432232 Morphing Circuit: An Integrated Design, Simulation, and Fabrication Workflow for Self-morphing Electronics] by a team from [https://www.cmu.edu Carnegie Mellon University] and [http://www.zju.edu.cn/english/ Zhejiang University, China]
* [https://dl.acm.org/doi/abs/10.1145/3432232 MorphingCircuit: An Integrated Design, Simulation, and Fabrication Workflow for Self-morphing Electronics] by a team from [https://www.cmu.edu Carnegie Mellon University] and [http://www.zju.edu.cn/english/ Zhejiang Univeristy, China]
* [https://www.tandfonline.com/doi/abs/10.1080/24725854.2020.1849876 An Integrated Manifold Learning Approach for High Dimensional Data Feature Extractions and its Applications to Online Process Monitoring of Additive Manufacturing] by a team from [https://www.ornl.gov/ Oak Ridge National Laboratory], [https://vt.edu/ Virginia Tech], and [https://go.okstate.edu/ Oklahoma Stata University], funded by the [https://www.nsf.gov/ National Science Foundation] and the [https://www.onr.navy.mil/ Office of Naval Research]
* [https://www.tandfonline.com/doi/abs/10.1080/24725854.2020.1849876 An Integrated Manifold Learning Approach for High Dimensional Data Feature Extractions and its Applications to Online Process Monitoring of Additive Manufacturing] by a team from [https://www.ornl.gov/ Oak Ridge National Laboratory], [https://vt.edu/ Virginia Tech], and [https://go.okstate.edu/ Oklahoma Stata University], funded by the [https://www.nsf.gov/ National Science Foundation] and the [https://www.onr.navy.mil/ Office of Naval Research]
* [https://www.sciencedirect.com/science/article/abs/pii/S1350453320301703 Additive Manufacturing Techniques for Smart Prosthetic Liners] by a team from several departments of the [https://www.ucl.ac.uk/ University College London] in cooperation with the [https://www.rnoh.nhs.uk/ Royal National Orthopaedic Hospital, Stanmore, UK]
* [https://www.sciencedirect.com/science/article/abs/pii/S1350453320301703 Additive Manufacturing Techniques for Smart Prosthetic Liners] by a team from several departments of the [https://www.ucl.ac.uk/ University College London] in cooperation with the [https://www.rnoh.nhs.uk/ Royal National Orthopaedic Hospital, Stanmore, UK]
Line 73: Line 91:
* [https://ieeexplore.ieee.org/abstract/document/9043493 Flexible Fiber Interconnects For Soft Mechatronics] by a team from the [https://www.sutd.edu.sg/ Singapore University of Technology and Design (SUTD)]
* [https://ieeexplore.ieee.org/abstract/document/9043493 Flexible Fiber Interconnects For Soft Mechatronics] by a team from the [https://www.sutd.edu.sg/ Singapore University of Technology and Design (SUTD)]


==== Published in 2019 ====
== NTM, 2019 ==


* [https://ieeexplore.ieee.org/abstract/document/8920352 UHF RFID-based Additively Manufactured Passive Wireless Sensor for Detecting Micrometeoroid and Orbital Debris Impacts] by a team from [https://erau.edu/degrees/bachelor/aerospace-engineering Aerospace Engineering at Embry-Riddle Aeronautical University]
* [https://ieeexplore.ieee.org/abstract/document/8920352 UHF RFID-based Additively Manufactured Passive Wireless Sensor for Detecting Micrometeoroid and Orbital Debris Impacts] by a team from [https://erau.edu/degrees/bachelor/aerospace-engineering Aerospace Engineering at Embry-Riddle Aeronautical University]
Line 81: Line 99:
*[https://res.mdpi.com/data/data-04-00071/article_deploy/data-04-00071.pdf?filename=&attachment=1 Isolation, Characterization, and Agent-Based Modeling of Mesenchymal Stem Cells in a Bio-construct for Myocardial Regeneration Scaffold Design] by a team from the [https://www.uao.edu.co/ Universidad Autónoma de Occidente de Cali - Colombia] and the [https://www.hes-so.ch/en/homepage-hes-so-1679.html University of Applied Sciences and Arts, Western Switzerland]
*[https://res.mdpi.com/data/data-04-00071/article_deploy/data-04-00071.pdf?filename=&attachment=1 Isolation, Characterization, and Agent-Based Modeling of Mesenchymal Stem Cells in a Bio-construct for Myocardial Regeneration Scaffold Design] by a team from the [https://www.uao.edu.co/ Universidad Autónoma de Occidente de Cali - Colombia] and the [https://www.hes-so.ch/en/homepage-hes-so-1679.html University of Applied Sciences and Arts, Western Switzerland]


==== Published in 2018 ====
== NTM, 2018 ==


* [https://onlinelibrary.wiley.com/doi/pdf/10.1002/admt.201800490 3D‐Printed Gastric Resident Electronics] by a team from [https://ki.mit.edu/ The Koch Institute for Integrative Cancer Research at MIT]
* [https://onlinelibrary.wiley.com/doi/pdf/10.1002/admt.201800490 3D‐Printed Gastric Resident Electronics] by a team from [https://ki.mit.edu/ The Koch Institute for Integrative Cancer Research at MIT]
Line 88: Line 106:
*[http://www.freepatentsonline.com/y2018/0320008.html Block Copolymer Ink Formulation for 3D Printing and Method of Making a 3D Printed Radiofrequency (RF) Device] by a team from the [http://web.mit.edu the Massachusetts Institute of Technology (MIT)] and [https://www.harvard.edu Harvard University]
*[http://www.freepatentsonline.com/y2018/0320008.html Block Copolymer Ink Formulation for 3D Printing and Method of Making a 3D Printed Radiofrequency (RF) Device] by a team from the [http://web.mit.edu the Massachusetts Institute of Technology (MIT)] and [https://www.harvard.edu Harvard University]
* [http://hyrel3d.net/papers/Hybrid_Processes_in_Additive_Manufacturing.pdf Hybrid Processes in Additive Manufacturing] by a team primarily from the [https://engineering.unl.edu/mme/ University of Nebraska–Lincoln's Department of Mechanical & Materials Engineering]
* [http://hyrel3d.net/papers/Hybrid_Processes_in_Additive_Manufacturing.pdf Hybrid Processes in Additive Manufacturing] by a team primarily from the [https://engineering.unl.edu/mme/ University of Nebraska–Lincoln's Department of Mechanical & Materials Engineering]
*[https://www.sciencedirect.com/science/article/pii/S2214860417304013 Additive Manufacturing- A Review of 4D Printing and Future Applications] by a team from [https://www.esa.int/About_Us/ESTEC/ESTEC_European_Space_Research_and_Technology_Centre The European Space Research and Technology Center]
* [https://www.researchgate.net/publication/329216477_Molecularly-Engineered_4D-Printed_Liquid_Crystal_Elastomer_Actuators Molecularly-Engineered, 4D-Printed Liquid Crystal Elastomer Actuators] by a team from the [https://be.utdallas.edu/ Bioengineering Department of University of Texas, Dallas]


==== Published in 2017 ====
== NTM, 2017 ==


* [https://youtu.be/3nKqwcXcEgY Additive Manufacturing of Toroid Inductor for Electronics Applications] by Chao Ding, [https://vt.edu Virginia Tech]
* [https://youtu.be/3nKqwcXcEgY Additive Manufacturing of Toroid Inductor for Electronics Applications] by Chao Ding, [https://vt.edu Virginia Tech]
Line 95: Line 115:
* [http://scholarworks.rit.edu/cgi/viewcontent.cgi?article=10830&context=theses A Preliminary Study of Conductive Filaments Printed Via Fused Filament Fabrication] by Smruti Ranjan Sahoo at [http://rit.edu Rochester Institute of Technology]
* [http://scholarworks.rit.edu/cgi/viewcontent.cgi?article=10830&context=theses A Preliminary Study of Conductive Filaments Printed Via Fused Filament Fabrication] by Smruti Ranjan Sahoo at [http://rit.edu Rochester Institute of Technology]
* [http://www.mdpi.com/1424-8220/17/9/2068/htm Review of Batteryless Wireless Sensors Using Additively Manufactured Microwave Resonators] in [http://www.mdpi.com/journal/sensors Sensors], a Journal of the [http://www.mdpi.com/ Multidisciplinary Digital Publishing Institute]
* [http://www.mdpi.com/1424-8220/17/9/2068/htm Review of Batteryless Wireless Sensors Using Additively Manufactured Microwave Resonators] in [http://www.mdpi.com/journal/sensors Sensors], a Journal of the [http://www.mdpi.com/ Multidisciplinary Digital Publishing Institute]
*[http://pubs.acs.org/doi/abs/10.1021/acsami.7b11851 4D Printing of Liquid Crystal Elastomers] by a team from the [https://be.utdallas.edu/ Bioengineering Department of the University of Texas, Dallas]


==== Published in 2016 ====
== NTM, 2016 ==


*[http://hyrel3d.net/papers/Additive_Manufacturing_of_Planar_Inductor.pdf Additive Manufacturing of Planar Inductor for Power Electronics Applications] by a team from [http://vt.edu Virginia Tech]
*[http://hyrel3d.net/papers/Additive_Manufacturing_of_Planar_Inductor.pdf Additive Manufacturing of Planar Inductor for Power Electronics Applications] by a team from [http://vt.edu Virginia Tech]
* [http://hyrel3d.net/papers/Low-Cost,_Single_Platform,_Hybrid_Mfg_System_for_Hybrid_Passives.pdf A Low-Cost, Single Platform, Hybrid Manufacturing System for RF Passives], [http://www.ieee.org/index.html The Institute of Electrical and Electronics Engineers, Incorporated (IEEE)]
* [http://hyrel3d.net/papers/Low-Cost,_Single_Platform,_Hybrid_Mfg_System_for_Hybrid_Passives.pdf A Low-Cost, Single Platform, Hybrid Manufacturing System for RF Passives], [http://www.ieee.org/index.html The Institute of Electrical and Electronics Engineers, Incorporated (IEEE)]
*[https://smartech.gatech.edu/bitstream/handle/1853/55685/LE-DISSERTATION-2016.pdf Nano-Material Based Flexible Radio Frequency Sensors for Wearable Health and Environment Monitoring: Designs and Prototypes Utilizing 3D/Inkjet Printing Technologies], A Dissertation Presented to The Academic Faculty of [https://www.ece.gatech.edu/ The School of Electrical and Computer Engineering at Georgia Tech]
*[https://smartech.gatech.edu/bitstream/handle/1853/55685/LE-DISSERTATION-2016.pdf Nano-Material Based Flexible Radio Frequency Sensors for Wearable Health and Environment Monitoring: Designs and Prototypes Utilizing 3D/Inkjet Printing Technologies], A Dissertation Presented to The Academic Faculty of [https://www.ece.gatech.edu/ The School of Electrical and Computer Engineering at Georgia Tech]
*[http://hyrel3d.net/papers/3D-4D_Printing_and_Stretchable_Conductive_Adhesives.pdf A Novel Approach to Integrating 3D/4D Printing and Stretchable Conductive Adhesive Technologies for High Frequency Packaging Applications] by a team from [http://www.gatech.edu/ Georgia Tech]


==== Published in 2015 ====
== NTM, 2015 ==
 


* [http://hyrel3d.net/papers/NinjaFlex_Filament_for_Antenna_Applications.pdf Infill Dependent 3D-Printed Material Based on NinjaFlex Filament for Antenna Applications], [http://www.ieee.org/index.html The Institute of Electrical and Electronics Engineers, Incorporated (IEEE)]
* [http://hyrel3d.net/papers/NinjaFlex_Filament_for_Antenna_Applications.pdf Infill Dependent 3D-Printed Material Based on NinjaFlex Filament for Antenna Applications], [http://www.ieee.org/index.html The Institute of Electrical and Electronics Engineers, Incorporated (IEEE)]
Line 112: Line 133:
* [https://ieeexplore.ieee.org/document/7345870 RF Characterization of 3D Printed Flexible Materials - NinjaFlex Filaments], [http://www.eumwa.org/en/euma/ The European Microwave Association (EuMA)]
* [https://ieeexplore.ieee.org/document/7345870 RF Characterization of 3D Printed Flexible Materials - NinjaFlex Filaments], [http://www.eumwa.org/en/euma/ The European Microwave Association (EuMA)]


== [[Reservoir_Heads|Unheated or Chilled Reservoir Printing (DIW)]] ==
== '''[[Reservoir_Heads|Unheated or Chilled Reservoir Printing (DIW, SEP, SSE, 3DCP, DCC)]]''' ==
 
Also known as '''Robocasting''' or '''DIW''' (Direct Ink Writing), '''SEP''' (Semisolid Extrusion Printing), '''SSE''' (Semisolid Extrusion). '''3DCP'''' (3D Concrete Printing), or '''DCC''' (Digital Concrete Construction).
 
== DIW/SEP/SSE, 2023 ==


Also known as Robocasting or DIW (Direct Ink Writing).
* [https://www.taylorfrancis.com/chapters/edit/10.1201/9781003258353-5/processing-bioceramics-additive-manufacturing-david-orisekeh-jahan Processing of Bioceramics by Additive Manufacturing], affiliation unknown
* [https://link.springer.com/chapter/10.1007/978-3-031-46015-9_8 Semisolid Extrusion Printing and 3D Bioprinting] by a team from [https://pharmacy.utexas.edu/ College of Pharmacy, The University of Texas at Austin] and [https://pharmacy.olemiss.edu/ School of Pharmacy, University of Mississippi]
* [https://www.sciencedirect.com/science/article/abs/pii/S0021979723022580 Size-dependent Viscoelasticity in Hybrid Colloidal Gels Based on Spherical Soft Nanoparticles and Two-dimensional Nanosilicates of Varying Size] by a team from the [https://sc.edu/ University of South Carolina]
* [https://onlinelibrary.wiley.com/doi/full/10.1002/adem.202300773 DC Resistance Measurements in Multi-Layer Additively Manufactured Yttrium Barium Copper Oxide Components] by a team from [http://lboro.ac.uk/ Loughborough University, UK]
* [https://www.cell.com/matter/pdf/S2590-2385(23)00503-9.pdf Morphology Map-guided Identification of Bijel Ink for Producing Conductive Porous Structures] by a team from [https://www.tamu.edu/ Texas A&M University]
* [https://link.springer.com/chapter/10.1007/978-3-031-31694-4_7 Peritoneal Implants and Drug Delivery] by a team from several departments of [https://gcuf.edu.pk/ Government College University, Faisalabad, Pakistan], [https://gcu.edu.pk/ Government College University, Lahore, Pakistan], and [https://uol.edu.pk/ University of Lahore, Lahore, Pakistan]
* [https://www.sciencedirect.com/science/article/abs/pii/S0144861723010512 A Bioinspired and Sustainable Route for the Preparation of Ag-crosslinked Alginate Fibers Decorated With Silver Nanoparticles] by a team from the [https://www.unifi.it/ University of Florence] and the [https://www.unistra.fr/ Université de Strasbourg, France]
* [https://www.sciencedirect.com/science/article/abs/pii/S2214860423004554 Radio Frequency-assisted Curing of on-chip Printed Cnt/silicone Heatsinks Produced by Material Extrusion 3d Printing] by a team from [https://www.a-star.edu.sg/simtech Singapore Institute of Manufacturing Technology (SIMTech), Agency for Science, Technology and Research (A⁎STAR)] and from [https://www.tamu.edu Texas A&M University]'s departments of [https://engineering.tamu.edu/chemical/ Chemical Engineering] and [https://engineering.tamu.edu/materials/ Materials Science & Engineering]
* [https://onlinelibrary.wiley.com/doi/pdf/10.1002/mame.202300272 Multimaterial Hydrogel 3D Printing] by a team from [https://www.auckland.ac.nz/en/science/about-the-faculty/school-of-chemical-sciences.html School of Chemical Sciences The University of Auckland]
* [https://onlinelibrary.wiley.com/doi/pdf/10.1002/mame.202300151 Fabrication of Gentamicin Sulfate-Loaded 3D-PrintedPolyvinyl Alcohol/Sodium Alginate/Gelatin-MethacryloylHybrid Scaffolds for Skin Tissue Replacement] by a team from several departments of [https://www.marmara.edu.tr/en Marmara University, Istanbul]
* [https://www.sciencedirect.com/science/article/abs/pii/S0272884223032649 Sintering Energy Conservation in Extrusion-based 3d Printing of Porcelain Ceramics Blended With Copper and Allied Alloys: a Sustainable Approach] by a team from the [https://www.iittp.ac.in/people/faculty/mechanical-engineering-department Department of Mechanical Engineering, Indian Institute of Technology Tirupati]
* [https://www.science.org/doi/pdf/10.1126/sciadv.adi8643 Ultrasensitive and Robust Mechanoluminescent Living Composites] by a team from multiple departments of the [https://ucsd.edu/  University of California, San Diego] and from the [https://iop.uva.nl/wzi/wzi.html Van der Waals-Zeeman Institute, Institute of Physics, University of Amsterdam]
* [https://pubs.acs.org/doi/full/10.1021/acsami.3c11742 Applicability of UV-Curable Binders in High Solid Suspensions for Direct-Ink-Write 3D Printing in Extremely Cold Temperatures] by a team from the [https://www.nasa.gov/marshall/ NASA Marshall Space Flight Center] and [https://www.gatech.edu/ Georgia Tech]'s [https://www.chbe.gatech.edu/ School of Chemical and Biomolecular Engineering] and [https://www.me.gatech.edu/ School of Mechanical Engineering]
* [https://www.sciencedirect.com/science/article/abs/pii/S235294072300210X 3d Printing to Enable Photocatalytic Process Engineering: a Critical Assessment and Perspective] by a team from [https://ati.ec.europa.eu/technology-centre/list-materials-research-and-technologies-mrt Materials Research and Technology (MRT) Department, Luxembourg Institute of Science and Technology (LIST)] and several departments at [https://www.kaust.edu.sa/en/ King Abdullah University of Science and Technology]
* [https://onlinelibrary.wiley.com/doi/abs/10.1002/adfm.202307279 Recent Progress on the 3D Printing of Dynamically Cross-Linked Polymers] by a team from the [https://cl.haust.edu.cn/ School of Materials Science and Engineering, Henan University of Technology]
* [https://www.sciencedirect.com/science/article/abs/pii/S0272884223018060 3d Printing of Tough Nature Inspired Hierarchical Architecture Using Chicken Bone and Eggshell Biowaste for Biomedical Applications] by a team from several locations of the [https://en.wikipedia.org/wiki/Indian_Institutes_of_Technology Indian Institutes of Technology] and from [https://www.morganadvancedmaterials.com Morgan Advanced Materials, State College, PA]
* [https://link.springer.com/article/10.1557/s43579-023-00457-9 3d-printing Formulated Polyelectrolyte Complexes (Pecs) in Air: Silica Compositions in Rheological Optimization for Layering] by a team from [https://utk.edu/iamm/ The University of Tennessee, Knoxville, TN] and [https://www.ndsu.edu/ North Dakota State University, Fargo, ND]
* [https://www.researchgate.net/profile/Koshovyi-Oleh/publication/373099339_SEMI-SOLID_EXTRUSION_3D-PRINTING_OF_EUCALYPT_EXTRACT-LOADED_POLYETHYLENE_OXIDE_GELS_INTENDED_FOR_PHARMACEUTICAL_APPLICATIONS/links/64e44d0d0acf2e2b52098b26/Semi-solid-extrusion-3D-printing-of-eucalypt-extract-loaded-polyethylene-oxide-gels-intended-for-pharmaceutical-applications.pdf Semi-solid Extrusion 3d-printing of Eucalypt Extract-loaded Polyethylene Oxide Gels Intended for Pharmaceutical Applications] by a team from [https://ut.ee/en/institute-pharmacy Institute of Pharmacy, Faculty of Medicine, University of Tartu, Estonia], [https://en.nuph.edu.ua/ National University of Pharmacy, Kharkiv, Ukraine], [https://www.ifnmu.com/ Ivano-Frankivsk National Medical University, Ivano-Frankivsk, Ukraine], and [https://curifylabs.com/ CurifyLabs, Helsinki, Finland]
* [https://scholarship.rice.edu/bitstream/handle/1911/115252/KHATER-DOCUMENT-2023.pdf?sequence=1 Fabrication and Characterization of Advanced Epoxy-based Composites and Nanocomposites], a PhD thesis submitted to [https://www.rice.edu Rice University]
* [https://ceramics.onlinelibrary.wiley.com/doi/abs/10.1111/jace.19408 Future Directions in Ceramic Additive Manufacturing: Fiber Reinforcements and Artificial Intelligence] by a team from the [https://www.afrl.af.mil/ US Air Force Research Laboratory]
* [https://www.proquest.com/openview/cd09c5c8d49df82041c26e915348b322/1?pq-origsite=gscholar&cbl=18750&diss=y Polymer/Coal Composites from Ink-based Additive Manufacturing], a Masters thesis submitted to [https://www.asu.edu/ Arizona State University]
* [https://www.sciencedirect.com/science/article/abs/pii/S2468519423002999 A Conformal Heat-drying Direct Ink Writing 3d Printing for High-performance Lithium-ion Batteries] by a team from [https://www.ornl.gov/eeid Electrification and Energy Infrastructures Division, Oak Ridge National Laboratory], [https://www.ornl.gov/facility/cnms Center for Nanophase Materials Sciences, Oak Ridge National Laboratory], and [https://engineering.case.edu/mechanical-and-aerospace-engineering Department of Mechanical and Aerospace Engineering, Case Western Reserve University]
* [https://www.sciencedirect.com/science/article/pii/S2666964123000243 Semi-solid Extrusion 3d-printing of Eucalypt Extract-loaded Polyethylene Oxide Gels Intended for Pharmaceutical Applications] by a team from [https://ut.ee/en/institute-pharmacy Institute of Pharmacy, Faculty of Medicine, University of Tartu], [https://en.nuph.edu.ua/ The National University of Pharmacy, Kharkiv, Ukraine], [https://curifylabs.com/ CurifyLabs], and Ivano-Frankivsk National Medical University, Ivano-Frankivsk, Ukraine
* [https://www.nature.com/articles/s41528-023-00272-1#MOESM1 Deep-learning-assisted Printed Liquid Metal Sensory System for Wearable Applications and Boxing Training] by a team from [http://me.zju.edu.cn/meenglish/15428/list.htm College of Mechanical Engineering, Zhejiang University of Technology], [https://www.colorado.edu/mechanical/ Department of Mechanical Engineering, University of Colorado Boulder], and [http://www.isee.zju.edu.cn/iseenglish/main.psp College of Information Engineering, Zhejiang University of Technology]
* [https://www.sciencedirect.com/science/article/abs/pii/S0260877423002856 Development of Bean-based Emulgels for 3d Printing Applications: Feasibility for Dysphagia Diets] by a team from the Universidad del Bío-Bío, Chile and [https://www.usach.cl/ Universidad de Santiago de Chile]
* [https://link.springer.com/article/10.1557/s43579-023-00415-5#author-information On the 3d Printing of Polyelectrolyte Complexes: a Novel Approach to Overcome Rheology Constraints] by a team from [https://www.ndsu.edu/cpm/ Department of Coatings and Polymeric Materials, North Dakota State University, Fargo], [https://engineering.case.edu/macromolecular-science-and-engineering Department of Macromolecular Sciences and Engineering, Case Western Reserve University], [https://www.ornl.gov/facility/cnms Center for Nanophase Materials and Sciences, Oak Ridge National Laboratory], and multiple departments of [https://www.utk.edu/ University of Tennessee, Knoxville]
* [https://www.osti.gov/servlets/purl/1992584 Carbon Scaffold Architectures for Stable Lithium Metal Anodes], a paper from [https://www.llnl.gov/ Lawrence Livermore National Laboratory]
* [https://pubs.acs.org/doi/abs/10.1021/acsaenm.3c00324 Printing Composites with Salt Hydrate Phase Change Materials for Thermal Energy Storage] by a team from the Chemistry, Mechanical Engineering, and Materials Science & Engineering departments of [https://www.tamu.edu/ Texas A&M University]
* [https://www.sciencedirect.com/science/article/abs/pii/S2405886623000416 Drug Delivery and Testing via 3D Printing] by a team from the [https://www.copuhsr.in/ College of Pharmacy, Pandit Bhagwat Dayal Sharma University of Health Sciences, Rohtak] and [https://mdu.ac.in/Department/DepartmentHome.aspx?Dept=29 Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak]
* [https://link.springer.com/article/10.1557/s43579-023-00407-5#author-information On the 3d Printability of One-part Moisture-curable Polyurethanes via Direct Ink Writing (DIW)] by a team from the [https://www.utk.edu/ University of Tennessee, Knoxville], [https://case.edu/ Case Western Reserve University], [https://novagard.com/ Novagard Solutions], and the [https://www.ornl.gov/facility/cnms Center for Nanophase Materials and Sciences, Oak Ridge National Laboratory]
* [https://pubs.acs.org/doi/abs/10.1021/acsaem.3c01418 Enhancing Photoelectrochemical Performance of the Printed Nanoporous FeVO4 Photoanode by Dual-Layer CoOx–CoPi Catalysts] by a team from [https://duytan.edu.vn/ Duy Tan University, Vietman], [https://www.ntu.edu.sg/ Nanyang Technological University, Singapore], [https://en.huji.ac.il/ The Hebrew University of Jerusalem, Jerusalem , Israel], and [https://www.cityu.edu.hk/ City University of Hong Kong, China]
* [https://www.sciencedirect.com/science/article/abs/pii/S0141813023027307 D Printed Styrax Liquidus (Liquidambar Orientalis Miller)-loaded Poly (L-lactic Acid)/chitosan Based Wound Dressing Material: Fabrication, Characterization, and Biocompatibility Results] by a team from [https://zonguldakbilsem.meb.k12.tr/ Kartal Prof. Dr. Saban Teoman Durali Science and Art Center, Istanbul], [https://www.marmara.edu.tr/en Marmara University], [https://www.iuc.edu.tr/en/ Istanbul University-Cerrahpasa], [https://halic.edu.tr/en Halic University], [https://www.ku.edu.tr/en/ Koç University], [https://suleymanyalcinsh.saglik.gov.tr/?_Dil=2 Goztepe Prof. Dr. Suleyman Yalcin City Hospital], and [https://international.arel.edu.tr/ Istanbul Arel University], all in Turkey
* [https://www.mdpi.com/2310-2861/9/7/547 3D Printing, Histological, and Radiological Analysis of Nanosilicate-Polysaccharide Composite Hydrogel as a Tissue-Equivalent Material for Complex Biological Bone Phantom] by a team from multiple departments of the [https://www.mu-varna.bg/EN Medical University of Varna, Bulgaria]
* [https://onlinelibrary.wiley.com/doi/abs/10.1002/app.54277 PDMS-silica Composite Gas Separation Membranes by Direct Ink Writing] by a team from [https://upd.edu.ph/ University of the Philippines Diliman], [https://www.utk.edu/ University of Tennessee, Knoxville], [https://case.edu/ Case Western Reserve University], [https://www.ndsu.edu/ North Dakota State University], and [https://www.ornl.gov/ Oak Ridge National Laboratory]
* [https://www.sciencedirect.com/science/article/pii/S0264127523004793 Ceramic Materials for 3d Printing of Biomimetic Bone Scaffolds – Current State-of-the-art & Future Perspectives] by a team from [https://sas.sastra.edu/centab/ TCentre for Nanotechnology & Advanced Biomaterials, School of Chemical & Biotechnology, SASTRA Deemed University, India] and  [https://www.ucl.ac.uk/surgery/research-department-orthopaedics-and-musculoskeletal-science Orthopaedics and Musculoskeletal Sciences, Univeristy College, London]
* [https://www.sciencedirect.com/science/article/pii/S0928098723001173 Pharmaceutical 3D-Printing of Nanoemulsified Eucalypt Extracts and Their Antimicrobial Activity] by a team from [https://ut.ee/en/institute-pharmacy Institute of Pharmacy, Faculty of Medicine, University of Tartu], [https://en.nuph.edu.ua/ The National University of Pharmacy, Ukraine], and [https://curifylabs.com/ Curify Labs, Finland]
* [https://www.sciencedirect.com/science/article/abs/pii/S0272884223014670 Texture in Silicon Carbide via Aqueous Suspension Material Extrusion and Seeded Grain Growth] by a team from [https://www.purdue.edu/ Purdue University]
* [https://onlinelibrary.wiley.com/doi/pdf/10.1002/aisy.202200332 Shape Memory Soft Robotics with Yield Stress Fluids] by a team from the [https://www.uva.nl/en University of Amsterdam] and the [https://www.tue.nl/en/ Eindhoven University of Technology (TU Eindhoven)]
* [https://pubs.acs.org/doi/full/10.1021/acsami.2c23028 Multimaterial Printing of Liquid Crystal Elastomers with Integrated Stretchable Electronics] by a team from the [https://www.meche.engineering.cmu.edu/ Department of Mechanical Engineering] and the [https://www.hcii.cmu.edu/ Human Computer Interaction Institute] of [https://www.cmu.edu/ Carnegie Mellon University], and from the [https://www.isr.uc.pt/ Institute of Systems and Robotics, Department of Electrical Engineering, University of Coimbra]
* [https://www.mdpi.com/2079-4983/14/5/251 Robocasting of Ceramic Fischer–Koch S Scaffolds for Bone Tissue Engineering] by a team from the [https://www.engr.colostate.edu/me/ Department of Mechanical Engineering], the [https://compsci.colostate.edu/ Department of Computer Science], the [https://www.engr.colostate.edu/sbme/ School of Biomedical Engineering] and the [https://mathematics.colostate.edu/ Department of Mathematics] of [https://www.colostate.edu/ Colorado State University]
* [https://www.sciencedirect.com/science/article/abs/pii/S0014305723002884 In Vitro Electrically Controlled Amoxicillin Release from 3D-Printed Chitosan/Bismuth Ferrite Scaffolds] by a team from the [https://bioeng.yildiz.edu.tr/page/DEPARTMENT/About/78 Department of Bioengineering, Faculty of Chemistry and Metallurgy, Yildiz Technical University], the [https://biomatter.ulb.be/ BioMatter unit - École polytechnique de Bruxelles, Université Libre de Bruxelles], the [http://iso.xynu.edu.cn/en/pages?cid=1&pid=1&pages_id=76 College of Life Sciences, Xinyang Normal University (XYNU)], and the [https://nbuam.marmara.edu.tr/en Center for Nanotechnology and Biomaterials Application & Research (NBUAM)], [https://mte.eng.ua.edu/ Department of Metallurgical and Materials Engineering], and [https://eczacilik.marmara.edu.tr/en/departments/basic-pharmaceutical-sciences/department-of-pharmaceutical-basic-sciences, Faculty of Pharmacy] of [https://www.marmara.edu.tr/en Marmara University]
* [https://www.sciencedirect.com/science/article/pii/S0023643823003766 Evaluation of Physicochemical Properties of Starch-Protein Gels: Printability and Ppostprocessing] by a team from [https://www.ubiobio.cl/w/ Universidad del Bío-Bío] and [https://www.uchile.cl/ Universidad de Chile]
* [https://dl.acm.org/doi/pdf/10.1145/3544548.3580638 EpoMemory: Multi-state Shape Memory for Programmable Morphing Interfaces] by a team from different departments of [https://www.cmu.edu/ Carnegie Mellon University]
* [https://www.spiedigitallibrary.org/conference-proceedings-of-spie/12484/124840B/Additive-manufacturing-of-highly-flexible-impact-wave-propagation-sensor/10.1117/12.2664163.short Additive Manufacturing of Highly Flexible Impact Wave Propagation Sensor] by a team from [https://www.lanl.gov/ Los Alamos National Laboratory] and [https://www.utep.edu/ The University of Texas at El Paso]
* [https://pubs.acs.org/doi/abs/10.1021/acsami.3c00389 3D Bioprintable Hypoxia-Mimicking PEG-Based Nano Bioink for Cartilage Tissue Engineering] by a team from the [https://iith.ac.in/ Indian Institute of Technology (IIT) Hyderabad,]'s  [https://people.iith.ac.in/subharath/index.html Regenerative Medicine and Stem cell (RMS) Lab, Department of Biomedical Engineering] and [https://msme.iith.ac.in/ Department of Materials Science and Metallurgical Engineering], as well as the Sri Manjeera Super Specialty Hospital, Department of Obstetrics and Gynecology, Sangareddy
* [https://onlinelibrary.wiley.com/doi/pdf/10.1002/aisy.202200402 Electrically Controlled Liquid Crystal Elastomer Surfaces forDynamic Wrinkling] by a team from [https://www.cmu.edu/ Carnegie Mellon University]'s [https://www.meche.engineering.cmu.edu/ Department of Mechanical Engineering] and [https://www.hcii.cmu.edu/ Human-Computer Interaction Institute] and the [https://www.umass.edu/engineering/academics/departments/mechanical-and-industrial-engineering Mechanical and Industrial Engineering Department, University of Massachusetts]
* [http://200.9.65.36/index.php/JBTH/article/download/286/224 A Literature Review of Additive Manufacturing in the Fabrication of Soft Robots: Main Techniques, Applications, and Related Industrial-Sized Machines] by a team from [https://www.senaicimatec.com.br/en/sobre/ SENAI CIMATEC University Center, Brazil]
* [https://www.mdpi.com/2072-666X/14/4/762 Development and Optimization of 3D-Printed Flexible Electronic Coatings: A New Generation of Smart Heating Fabrics for Automobile Applications] by a team from the [https://www.insa-lyon.fr/en/insa-lyon Electrical Department, Ladoua Campus, University Lyon, INSA-Lyon] and [https://www.tescagroup.com/en/ TESCA-Group]
* [https://www.sciencedirect.com/science/article/pii/S2214785323016115 2D Stationary Computational Printing of Cement-based Pastes with Time-Dependent Rheology] by a team from the [https://www.tntech.edu/engineering/programs/che/ Department of Chemical Engineering, Tennessee Technical University]
* [https://pubs.acs.org/doi/abs/10.1021/acsabm.2c01075 3D Printing of a Biocompatible Nanoink Derived from Waste Animal Bones] by a team from various departments of the [https://www.iitkgp.ac.in/ Kharagpur], [https://iitgn.ac.in/ Gandhinagar], and [https://www.iitbhu.ac.in/ Varanasi (BHU)] campuses of the [https://www.iitsystem.ac.in/ Indian Institutes of Technology]
* [https://www.sciencedirect.com/science/article/pii/S2214785323009240 Assessing the Robustness of Cement-Hydrogel-Based Binders as 3D Printing Materials] by a team from [https://www.tntech.edu/engineering/programs/che/index.php Department of Chemical Engineering, Tennessee Tech University]
* [https://onlinelibrary.wiley.com/doi/abs/10.1002/admt.202201421 3D Printable Hydrogel with Tunable Degradability and Mechanical Properties as a Tissue Scaffold for Pelvic Organ Prolapse Treatment] by a team from [https://www.asu.edu/ Arizona State University]'s [https://poly.engineering.asu.edu/ The Polytechnic School (TPS), Ira A. Fulton Schools of Engineering], [https://sbhse.engineering.asu.edu/faculty/ Department of Biomedical Engineering, School of Biological and Health Systems Engineering (SBHSE)], and[https://msn.engineering.asu.edu/ The School of Manufacturing Systems and Networks (MSN), Ira A. Fulton Schools of Engineering]; from [https://www.mayoclinic.org/patient-visitor-guide/arizona The Mayo Clinic]'s Arizona departments of [https://www.mayo.edu/research/departments-divisions/department-immunology/overview Department of Immunology], [https://www.mayo.edu/research/labs/head-and-neck-regenerative-medicine/overview Head and Neck Regenerative Medicine Laboratory], [https://www.mayoclinic.org/departments-centers/obstetrics-gynecology/sections/overview/ovc-20423739 Department of Medical and Surgical Gynecology], and [https://www.mayoclinic.org/departments-centers/ent-head-neck-surgery/sections/overview/ovc-20424084 Division of Laryngology, Department of Otolaryngology]; and the [https://gondabrain.biu.ac.il/en/node/1 Faculty of Engineering, Institute of Nanotechnology, Gonda Brain Research Center, Bar-Ilan University]
* [https://link.springer.com/article/10.1557/s43579-023-00343-4 Acrylic Sealants as Practicable Direct Ink Writing (DIW) 3D-Printable Materials] by a team from the following organizations: [https://engineering.case.edu/macromolecular-science-and-engineering Department of Macromolecular Sciences and Engineering, Case Western Reserve University], [https://novagard.com/ Novagard Solutions], [https://cimav.edu.mx/en/research/monterrey-unit/ Advanced Functional Materials & Nanotechnology Group, Centro de Investigación en Materials Avanzados S. C. (CIMAV-Unidad Monterrey)], [https://research.utk.edu/iamm/ Department of Chemical and Biomolecular Engineering, Institute for Advanced Materials and Manufacturing, University of Tennessee, Knoxville], [https://mse.utk.edu/ Department of Materials Science and Engineering and Institute for Advanced Materials and Manufacturing, University of Tennessee, Knoxville], [https://www.ndsu.edu/cpm/ Department of Coatings and Polymeric Materials, North Dakota State University], and [https://www.ornl.gov/facility/cnms Center for Nanophase Materials and Sciences, Oak Ridge National Laboratory]
* [https://link.springer.com/article/10.1007/s00170-023-11091-z Influence of Binder Concentration in Zeolitic ZSM-5/bentonite 3D-printed Monoliths Manufactured through Robocasting for Catalytic Applications] by a team from the [https://www.ihu.gr/en/enhome International Hellenic University] and the [https://www.certh.gr/root.en.aspx Centre for Research and Technology Hellas (CERTH)]
* [https://www.mdpi.com/1999-4923/15/3/737/pdf A Novel Approach for the Fabrication of 3D-Printed Dental Membrane Scaffolds including Antimicrobial Pomegranate Extract] by a team primarily from [https://www.marmara.edu.tr/en Marmara University]
* [https://www.sciencedirect.com/science/article/abs/pii/S0955221923001577 3D Printing of Doped Barium-titanate Using Robocasting - Toward New Generation Lead-free Piezoceramic Transducers] by a team from the [https://www.insa-lyon.fr/en/ INSA-Lyon] and [https://www.thalesgroup.com/en/global/innovation/research-and-technology Thales Research & Technology]
* [https://iopscience.iop.org/article/10.1149/2754-2726/acbe0c/pdf Comparison of Machine Learning Algorithms for Natural Gas Identification with Mixed Potential Electrochemical Sensor Arrays] by a team from the [https://physics.yale.edu/ Department of Physics, Yale University] and the [https://cmem.unm.edu/ Center for MicroEngineered Materials, University of New Mexico]
* [https://www.sciencedirect.com/science/article/pii/S0272884223003978 Effect of Particle Size on Additive Manufacturing of Complex Architecture of Silicon Carbide] by a team from the [https://www.iitsystem.ac.in/ Indian Institute of Technology]'s [http://www.iitkgp.ac.in/ Kharagpur], [https://www.iitbhu.ac.in/ (BHU) Varanasi], and [https://iitgn.ac.in/ Gandhinagar] campuses, and well as the [https://www.vssc.gov.in/ Vikram Sarabhai Space Centre]
* [https://scholarworks.utep.edu/cgi/viewcontent.cgi?article=4669&context=open_etd Direct Ink Write And Thermomechanical Characterization Of Thermoset Composites], a Master's thesis submitted to the [https://www.utep.edu/programs/undergraduate/mechanical-engineering.html Department of Mechanical Engineering, University of Texas at El Paso]
* [https://www.sciencedirect.com/science/article/abs/pii/S2214860423000386 Material Extrusion of Highly-Loaded Silicon Nitride Aqueous Inks for Solid Infilled Structures] by a team from [https://www.afrl.af.mil/RX/ Materials and Manufacturing Directorate, Air Force Research Laboratory], [https://sites.nationalacademies.org/PGA/RAP/index.htm National Research Council Research Associate Program], [https://www.ues.com/ UES, Inc.], [https://www.soche.org/ Strategic Ohio Council for Higher Education], and [https://www.ge.com/research/ General Electric Research]
* [https://pubs.acs.org/doi/abs/10.1021/acsanm.2c05423 Printed Carbon Nanotube-Based Humidity Sensors Deployable on Surfaces of Widely Varying Curvatures] by a team from the [https://enme.umd.edu/ Department of Mechanical Engineering of the University of Maryland]
* [https://www.sciencedirect.com/science/article/abs/pii/S2352710223000530 Nanomechanical Characterization of 3D Printed Cement Pastes] by a team from [https://www.vanderbilt.edu/ Vanderbilt University's [https://engineering.vanderbilt.edu/chbe/ Department of Chemical and Biomolecular Engineering] and [https://engineering.vanderbilt.edu/cee/ Department of Civil and Environment Engineering]
* [https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202207673 Triplet Fusion Upconversion for Photocuring 3D Printed Particle-Reinforced Composite Networks] by a team from the [https://chem.washington.edu/ Department of Chemistry, University of Washington] and the [https://www.chem.columbia.edu/ Department of Chemistry, Columbia University]


==== Published in 2022 ====
== DIW/SEP/SSE, 2022 ==


* [https://www.sciencedirect.com/science/article/abs/pii/S0958946522004875 Halloysite Reinforced 3D-printable Geopolymers] by a team from [https://www.dtu.dk/english The Technical University of Denmark]'s Departments of [https://orbit.dtu.dk/en/organisations/department-of-civil-and-mechanical-engineering Civil & Mechanical Engineering], [https://www.fysik.dtu.dk/english Physics], [https://www.healthtech.dtu.dk/english Heath Technology], and [https://www.nanolab.dtu.dk/english Nanolab], as well as the [https://www.imperial.ac.uk/civil-engineering/ Department of Civil and Environmental Engineering, Imperial College London]
* [https://iopscience.iop.org/article/10.1088/2058-8585/aca813/meta Direct Ink Write 3D printing of Wave Propagation Sensor] by a team from [http://lanl.gov  Los Alamos National Laboratory] and from [http://utep.edu The University of Texas at El Paso
* [https://onlinelibrary.wiley.com/doi/abs/10.1002/pat.5948 3D-printable Cyclic Peptide Loaded Microporous Polymers for Antimicrobial Wound Dressing Materials] by a team from the [https://www.nrl.navy.mil/chemistry/ Chemistry Division, U.S. Naval Research Laboratory]
* [https://www.sciencedirect.com/science/article/pii/S2405886622000598 MultimodalIimaging Compatible Micro-Physiological System] by a team from [https://www.texaschildrens.org/departments/radiology Department of Radiology, Texas Children's Hospital] and [https://www.bcm.edu/ Baylor College of Medicine]'s Departments of [https://www.bcm.edu/departments/radiology Radiology] and [https://www.bcm.edu/academic-centers/dan-l-duncan-comprehensive-cancer-center/research/programs/pediatric-cancer-program Pediatrics-Oncology]
* [https://www.sciencedirect.com/science/article/abs/pii/S2214860422006376 Electric poling-assisted additive manufacturing technique for piezoelectric active poly(vinylidene fluoride) films: Towards fully three-dimensional printed functional materials] by a team from [https://purdue.edu/ Purdue University]'s [https://polytechnic.purdue.edu/schools/engineering-technology School of Engineering Technology], [https://engineering.purdue.edu/MSE School of Materials Engineering], and [https://engineering.purdue.edu/IE School of Industrial Engineering],
* [https://www.proquest.com/openview/94671663c312abf32560fbd499dcfdfe/ Extrusion-Based 3D Printing of Stretchable Electronic Coating for Condition Monitoring of Suction Cups] by a team from [https://lgef.insa-lyon.fr/ Laboratoire de Génie Electrique, INSA Lyon] and [https://hybria.fr/en/home/ Hybria Institute of Business and Technologies, Écully Campus]
* [https://www.researchgate.net/profile/Josh-Kacher/publication/355675319_Fabrication_of_3D_Printed_Complex_Concentrated_Alloys_using_Oxide_Precursors/links/6320eccf071ea12e362ecfdc/Fabrication-of-3D-Printed-Complex-Concentrated-Alloys-using-Oxide-Precursors.pdf Fabrication of 3D Printed Complex cConcentrated Alloys using Oxide Precursors] by a team from [http://gatech.edu Georgia Tech]'s [https://www.mse.gatech.edu/ School of Materials Science and Engineering] and [https://bme.gatech.edu/bme/ Department of Biomedical Engineering]
* [https://link.springer.com/article/10.1557/s43579-022-00287-1 3D-Printed PDMS-based Membranes for CO<sub>2</sub> Separation Applications] by a team from [https://www.ornl.gov/ Oak Ridge National Labratory]'s [https://www.ornl.gov/facility/cnms Center for Nanophase Materials and Sciences] and [https://www.ornl.gov/division/csd Chemical Sciences Division], the [https://engineering.case.edu/macromolecular-science-and-engineering Department of Macromolecular Sciences and Engineering, Case Western Reserve University], the [https://research.utk.edu/iamm/ Institute for Advanced Materials and Manufacturing, University of Tennessee Research Park], the [https://dmmme.coe.upd.edu.ph/ Department of Mining, Metallurgical, and Materials Engineering, University of the Philippines], the [https://www.ndsu.edu/cpm/ Department of Coatings and Polymeric Materials, North Dakota State University], and [https://www.utk.edu/ University of Tennessee, Knoxville]'s [https://cbe.utk.edu/ Department of Chemical and Biomolecular Engineering] and [https://chem.utk.edu/ Department of Chemistry]
* [https://www.osti.gov/servlets/purl/1890799 Performance of Lithium-Ion Batteries with 3D Printed Anodes and Compressible Carbon Structures], by [https://www.llnl.gov/ Lawrence Livermore National Laboratory]
* [https://sigma.yildiz.edu.tr/storage/upload/pdfs/1663838519-en.pdf Controlled Release of Metformin-Loaded SA/PEG Scaffolds] produced by 3D-Printing Technology], published by [https://eds.yildiz.edu.tr/ Yildiz Technical University Press]
* [https://pubs.acs.org/doi/abs/10.1021/acs.biomac.2c00860 Thermal and UV Curable Formulations of Poly(propylene glycol)–Poly(hydroxyurethane) Elastomers toward Nozzle-Based 3D Photoprinting] by a team from the [https://www.uliege.be/ University of Liège]
* [https://pubs.acs.org/doi/abs/10.1021/acs.biomac.2c00860 Thermal and UV Curable Formulations of Poly(propylene glycol)–Poly(hydroxyurethane) Elastomers toward Nozzle-Based 3D Photoprinting] by a team from the [https://www.uliege.be/ University of Liège]
* [https://www.sciencedirect.com/science/article/pii/S2214785322058175 Mechanical Characterization of 3D-Printed Silicone/Epoxy Hybrids] by a team from the Digital Manufacturing and Design Centre and the Engineering and Product Development Pillar of the [https://www.sutd.edu.sg/ Singapore University of Technology and Design]
* [https://www.sciencedirect.com/science/article/pii/S2214785322058175 Mechanical Characterization of 3D-Printed Silicone/Epoxy Hybrids] by a team from the Digital Manufacturing and Design Centre and the Engineering and Product Development Pillar of the [https://www.sutd.edu.sg/ Singapore University of Technology and Design]
Line 130: Line 227:
* [https://onlinelibrary.wiley.com/doi/pdf/10.1002/admt.202200534 A Comparative Study of Silver Microflakes in Digitally Printable Liquid Metal Embedded Elastomer Inks for Stretchable Electronics] by a team from the [https://www.meche.engineering.cmu.edu/ Department of Mechanical Engineering, Carnegie Mellon University] and the [https://www.uc.pt/en/fctuc/deec/Department Department of Electrical Engineering, University of Coimbra]
* [https://onlinelibrary.wiley.com/doi/pdf/10.1002/admt.202200534 A Comparative Study of Silver Microflakes in Digitally Printable Liquid Metal Embedded Elastomer Inks for Stretchable Electronics] by a team from the [https://www.meche.engineering.cmu.edu/ Department of Mechanical Engineering, Carnegie Mellon University] and the [https://www.uc.pt/en/fctuc/deec/Department Department of Electrical Engineering, University of Coimbra]
* [https://www.sciencedirect.com/science/article/abs/pii/S0021979722012097 Hybrid Colloidal Gels with Tunable Elasticity Formed by Charge-Driven Assembly between Spherical Soft Nanoparticles and Discotic Nanosilicates] by a team from the [https://sc.edu/study/colleges_schools/engineering_and_computing/departments/chemical_engineering/index.php Department of Chemical Engineering] and the [https://sc.edu/study/colleges_schools/engineering_and_computing/departments/biomedical_engineering/index.php Biomedical Engineering Program ] of the [https://sc.edu/ University of South Carolina]
* [https://www.sciencedirect.com/science/article/abs/pii/S0021979722012097 Hybrid Colloidal Gels with Tunable Elasticity Formed by Charge-Driven Assembly between Spherical Soft Nanoparticles and Discotic Nanosilicates] by a team from the [https://sc.edu/study/colleges_schools/engineering_and_computing/departments/chemical_engineering/index.php Department of Chemical Engineering] and the [https://sc.edu/study/colleges_schools/engineering_and_computing/departments/biomedical_engineering/index.php Biomedical Engineering Program ] of the [https://sc.edu/ University of South Carolina]
* [https://onlinelibrary.wiley.com/doi/pdf/10.1002/adem.202200485 Effect of Additive Manufacturing onβ-PhasePoly(Vinylidene Fluoride)-Based Capacitive TemperatureSensors] by a team from the [https://polytechnic.purdue.edu/schools/engineering-technology School of Engineering Technology, Purdue University]
* [https://onlinelibrary.wiley.com/doi/pdf/10.1002/adem.202200485 Effect of Additive Manufacturing onß-PhasePoly(Vinylidene Fluoride)-Based Capacitive TemperatureSensors] by a team from the [https://polytechnic.purdue.edu/schools/engineering-technology School of Engineering Technology, Purdue University]
* [https://pubs.acs.org/doi/abs/10.1021/acsbiomaterials.2c00313 Silk Fibroin as a Bioink – A Thematic Review of Functionalization Strategies for Bioprinting Applications] by a team from the [https://www.nus.edu.sg/ National University of Singapore]
* [https://pubs.acs.org/doi/abs/10.1021/acsbiomaterials.2c00313 Silk Fibroin as a Bioink – A Thematic Review of Functionalization Strategies for Bioprinting Applications] by a team from the [https://www.nus.edu.sg/ National University of Singapore]
* [https://link.springer.com/chapter/10.1007/978-3-031-06116-5_26 Evaluation of Durability of 3D-Printed Cementitious Materials for Potential Applications in Structures Exposed to Marine Environments] by a team primarily from the [https://engineering.purdue.edu/CE Lyles School of Civil Engineering, Purdue University]
* [https://link.springer.com/chapter/10.1007/978-3-031-06116-5_26 Evaluation of Durability of 3D-Printed Cementitious Materials for Potential Applications in Structures Exposed to Marine Environments] by a team primarily from the [https://engineering.purdue.edu/CE Lyles School of Civil Engineering, Purdue University]
* [https://onlinelibrary.wiley.com/doi/full/10.1002/smll.202200951 4D Printing of Extrudable and Degradable Poly(Ethylene Glycol) Microgel Scaffolds for Multidimensional Cell Culture] by a team from the [https://www.colorado.edu/chbe/ Department of Chemical and Biological Engineering] and the [https://www.colorado.edu/biofrontiers/ BioFrontiers Institute] of the [https://www.colorado.edu/ University of Colorado - Boulder] and the [https://medschool.cuanschutz.edu/mstp Medical Scientist Training Program, School of Medicine, University of Colorado - Anschutz Medical Campus]
* [https://pubs.rsc.org/en/content/articlehtml/2022/ra/d2ra02009b 3D Printed Interdigitated Supercapacitor using Reduced Graphene Oxide-MnOx/Mn3O4 Based Electrodes] by a team from the [https://utk.edu/ University of Tennessee, Knoxville]
* [https://pubs.rsc.org/en/content/articlehtml/2022/ra/d2ra02009b 3D Printed Interdigitated Supercapacitor using Reduced Graphene Oxide-MnOx/Mn3O4 Based Electrodes] by a team from the [https://utk.edu/ University of Tennessee, Knoxville]
* [https://www.sciencedirect.com/science/article/abs/pii/S0955221922004800#ab0015 3D Printable Ceramic Pastes Design: Correlating Rheology & Printability] by a team from [https://cimav.edu.mx/investigacion/subsede-monterrey/quimica-de-materiales-polimeros-y-sufractantes/laboratorio-3d-lab/ Nano & Micro Additive Manufacturing of Polymers and Composite Materials Laboratory ‘‘3D LAB’’, Advanced Functional Materials & Nanotechnology Group, Centro de Investigación en Materiales Avanzados S.C. (CIMAV-Subsede Monterrey)] and [https://cimav.edu.mx/en/research/department-of-engineering-and-materials-chemistry/ Materials Chemistry Department, Centro de Investigación en Materiales Avanzados S.C. (CIMAV-Chihuahua)] in Mexico
* [https://www.sciencedirect.com/science/article/abs/pii/S0955221922004800#ab0015 3D Printable Ceramic Pastes Design: Correlating Rheology & Printability] by a team from [https://cimav.edu.mx/investigacion/subsede-monterrey/quimica-de-materiales-polimeros-y-sufractantes/laboratorio-3d-lab/ Nano & Micro Additive Manufacturing of Polymers and Composite Materials Laboratory ‘‘3D LAB’’, Advanced Functional Materials & Nanotechnology Group, Centro de Investigación en Materiales Avanzados S.C. (CIMAV-Subsede Monterrey)] and [https://cimav.edu.mx/en/research/department-of-engineering-and-materials-chemistry/ Materials Chemistry Department, Centro de Investigación en Materiales Avanzados S.C. (CIMAV-Chihuahua)] in Mexico
* [https://www.sciencedirect.com/science/article/abs/pii/S0008884622001582 2D Stationary Computational Printing of Cement-based Pastes] by a team from the [https://www.tntech.edu/engineering/programs/che/index.php Department of Chemical Engineering, Tennessee Technological University]
* [https://www.sciencedirect.com/science/article/abs/pii/S0008884622001582 2D Stationary Computational Printing of Cement-based Pastes] by a team from the [https://www.tntech.edu/engineering/programs/che/index.php Department of Chemical Engineering, Tennessee Technological University]
* [https://onlinelibrary.wiley.com/doi/10.1002/adfm.202201766 Direct Ink Writing of 4D Structural Colors] by a team from [https://www.tue.nl/en/research/research-groups/stimuli-responsive-functional-materials-devices/ Laboratory of Stimuli-Responsive Functional Materials and Devices (SFD), Department of Chemical Engineering and Chemistry] and [https://www.tue.nl/en/research/institutes/institute-for-complex-molecular-systems/ Institute for Complex Molecular Systems (ICMS)] of the [https://www.tue.nl/en Eindhoven University of Technology (TU/e)]
* [https://www.sciencedirect.com/science/article/abs/pii/S0141813022011424 Investigation of 3D-printed Chitosan-Xanthan Gum Patches] by a team from ten universities from Turkey, Poland, India, and the UK.
* [https://www.sciencedirect.com/science/article/abs/pii/S0141813022011424 Investigation of 3D-printed Chitosan-Xanthan Gum Patches] by a team from ten universities from Turkey, Poland, India, and the UK.
* [https://smartech.gatech.edu/bitstream/handle/1853/66669/STIERS-THESIS-2022.pdf?sequence=1 Additive Manufacturing of Carbon Steels Through Direct Ink Write Printing of Oxide Precursors], a thesis presented to [https://www.mse.gatech.edu/ Georgia Tech School of Materials Science and Engineering]
* [https://smartech.gatech.edu/bitstream/handle/1853/66669/STIERS-THESIS-2022.pdf?sequence=1 Additive Manufacturing of Carbon Steels Through Direct Ink Write Printing of Oxide Precursors], a thesis presented to [https://www.mse.gatech.edu/ Georgia Tech School of Materials Science and Engineering]
Line 162: Line 257:
* [https://www.proquest.com/openview/b6e1fae09e770ff9d338bb96ea682375/1?pq-origsite=gscholar&cbl=18750&diss=y Functionalization of Thermoresponsive Hydrogels for Topical Delivery of Cellular and Pharmaceutical Payloads to the Intestine], a PhD dissertation submitted to [https://che.northeastern.edu/ Northeastern University's Department of Chemical Engineering]
* [https://www.proquest.com/openview/b6e1fae09e770ff9d338bb96ea682375/1?pq-origsite=gscholar&cbl=18750&diss=y Functionalization of Thermoresponsive Hydrogels for Topical Delivery of Cellular and Pharmaceutical Payloads to the Intestine], a PhD dissertation submitted to [https://che.northeastern.edu/ Northeastern University's Department of Chemical Engineering]


==== Published in 2021 ====
== DIW/SEP/SSE, 2021 ==


* [https://www.sciencedirect.com/science/article/pii/S0008884621001472 Rheological Characterization of 3D Printable Geopolymers] by a team from several departments of the [https://www.dtu.dk/english/ Technical University of Denmark], [https://www.imperial.ac.uk/civil-engineering/ Civil and Environmental Engineering, Imperial College London], and [https://www.regenerative-biomaterials.nl/ Dentistry - Regenerative Biomaterials, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, the Netherlands]
* [https://onlinelibrary.wiley.com/doi/full/10.1002/adma.202103309 Anisotropic Iridescence and Polarization Patterns in a Direct Ink Written Chiral Photonic Polymer] by a team from [https://www.tue.nl/en/research/research-groups/stimuli-responsive-functional-materials-devices/ Laboratory of Stimuli-Responsive Functional Materials and Devices (SFD), Department of Chemical Engineering and Chemistry, Eindhoven University of Technology (TU/e)] and [https://www.sabic.com/en/about/innovation/our-technology-Innovation-centers T&I, SABIC], both in The Netherlands.
* [https://onlinelibrary.wiley.com/doi/full/10.1002/adma.202103309 Anisotropic Iridescence and Polarization Patterns in a Direct Ink Written Chiral Photonic Polymer] by a team from [https://www.tue.nl/en/research/research-groups/stimuli-responsive-functional-materials-devices/ Laboratory of Stimuli-Responsive Functional Materials and Devices (SFD), Department of Chemical Engineering and Chemistry, Eindhoven University of Technology (TU/e)] and [https://www.sabic.com/en/about/innovation/our-technology-Innovation-centers T&I, SABIC], both in The Netherlands.
*[https://iopscience.iop.org/article/10.1088/2058-8585/ac442e/meta Direct Ink Write Multi-Material Printing of PDMS-BTO Composites with MWCNT Electrodes for Flexible Force Sensors] by a team from the [https://www.utep.edu/ University of Texas at El Paso] and the [https://kcnsc.doe.gov/ U.S. Department of Energy's Kansas City National Security Campus]
*[https://iopscience.iop.org/article/10.1088/2058-8585/ac442e/meta Direct Ink Write Multi-Material Printing of PDMS-BTO Composites with MWCNT Electrodes for Flexible Force Sensors] by a team from the [https://www.utep.edu/ University of Texas at El Paso] and the [https://kcnsc.doe.gov/ U.S. Department of Energy's Kansas City National Security Campus]
Line 171: Line 267:
*[https://onlinelibrary.wiley.com/doi/full/10.1002/admt.202100974 3D Printing of Transparent Silicone Elastomers] by a team from [https://www.llnl.gov/ Lawrence Livermore National Laboratory]
*[https://onlinelibrary.wiley.com/doi/full/10.1002/admt.202100974 3D Printing of Transparent Silicone Elastomers] by a team from [https://www.llnl.gov/ Lawrence Livermore National Laboratory]
*[https://iopscience.iop.org/article/10.1088/1758-5090/ac3d75/meta Effects of Transglutaminase Cross-Linking Process on Printability of Gelatin Microgel-Gelatin Solution Composite Bioink] by a team from the [https://www.ufl.edu/ University of Florida]
*[https://iopscience.iop.org/article/10.1088/1758-5090/ac3d75/meta Effects of Transglutaminase Cross-Linking Process on Printability of Gelatin Microgel-Gelatin Solution Composite Bioink] by a team from the [https://www.ufl.edu/ University of Florida]
*[https://www.sciencedirect.com/science/article/abs/pii/S235249282100951X 4D-Actuators by 3D-Printing Combined with Water-based Curing] by a team from [https://www.hereon.de/institutes/active_polymers/index.php.en Institute of Active Polymers, Helmholtz-Zentrum Hereon]
*[https://www.sciencedirect.com/science/article/pii/S2667025921000315 3D Printing of Osage Orange Extract/Chitosan Scaffolds for Soft Tissue Engineering] by a team from [https://www.marmara.edu.tr/en Marmara University] and [https://www.yildiz.edu.tr/en/ Yildiz Technical University]
*[https://www.sciencedirect.com/science/article/pii/S2667025921000315 3D Printing of Osage Orange Extract/Chitosan Scaffolds for Soft Tissue Engineering] by a team from [https://www.marmara.edu.tr/en Marmara University] and [https://www.yildiz.edu.tr/en/ Yildiz Technical University]
*[https://onlinelibrary.wiley.com/doi/abs/10.1002/prep.202100231 Factors Affecting Substrate Heating with Printed Thermites] from Dr. Matthew Ervin, [https://www.arl.army.mil/ US Army Research Laboratory]
*[https://onlinelibrary.wiley.com/doi/abs/10.1002/prep.202100231 Factors Affecting Substrate Heating with Printed Thermites] from Dr. Matthew Ervin, [https://www.arl.army.mil/ US Army Research Laboratory]
*[https://onlinelibrary.wiley.com/doi/abs/10.1002/adfm.202106843 4D Printing of Engineered Living Materials] by a team from several departments at [https://www.tamu.edu/ Texas A&M University
*[https://www.sciencedirect.com/science/article/pii/S2666964121000266 Effects of Crosslinking on the Physical Solid-State and Dissolution Properties of 3D-printed Theophylline Tablets] by a team from the [https://www.ut.ee/en University of Tartu] and the [https://www.helsinki.fi/en University of Helsinki]
*[https://www.sciencedirect.com/science/article/pii/S2666964121000266 Effects of Crosslinking on the Physical Solid-State and Dissolution Properties of 3D-printed Theophylline Tablets] by a team from the [https://www.ut.ee/en University of Tartu] and the [https://www.helsinki.fi/en University of Helsinki]
*[https://www.sciencedirect.com/science/article/pii/S2590006421000284 Long-term Stabilized Amorphous Calcium Carbonate—an Ink for Bio-inspired 3D Printing] by a team from the [https://materials.technion.ac.il/en/Research/bio-inspired-surface-engineering-and-biomineralization-lab-2/ Bio-Inspired Surface Engineering and Biomineralization Lab of Technion University]
*[https://www.sciencedirect.com/science/article/pii/S2590006421000284 Long-term Stabilized Amorphous Calcium Carbonate—an Ink for Bio-inspired 3D Printing] by a team from the [https://materials.technion.ac.il/en/Research/bio-inspired-surface-engineering-and-biomineralization-lab-2/ Bio-Inspired Surface Engineering and Biomineralization Lab of Technion University]
Line 224: Line 318:
* [https://onlinelibrary.wiley.com/doi/abs/10.1002/adfm.202008216 Synthetic Bone‐Like Structures Through Omnidirectional Ceramic Bioprinting in Cell Suspensions] by a team from the [https://www.unsw.edu.au/ University of New South Wales]'s [https://www.acn.unsw.edu.au/ Centre for Nanomedicine], [http://www.materials.unsw.edu.au/ School of Materials Science and Engineering], and [https://www.sydney.edu.au/engineering/schools/school-of-aerospace-mechanical-and-mechatronic-engineering.html School of Aerospace, Mechanical and Mechatronic Engineering]
* [https://onlinelibrary.wiley.com/doi/abs/10.1002/adfm.202008216 Synthetic Bone‐Like Structures Through Omnidirectional Ceramic Bioprinting in Cell Suspensions] by a team from the [https://www.unsw.edu.au/ University of New South Wales]'s [https://www.acn.unsw.edu.au/ Centre for Nanomedicine], [http://www.materials.unsw.edu.au/ School of Materials Science and Engineering], and [https://www.sydney.edu.au/engineering/schools/school-of-aerospace-mechanical-and-mechatronic-engineering.html School of Aerospace, Mechanical and Mechatronic Engineering]


==== Published in 2020 ====
== DIW/SEP/SSE, 2020 ==


* [https://www.sciencedirect.com/science/article/abs/pii/S2214860420307041 Multi-Material Additively Manufactured Composite Reactive Materials via Condinuous Filament Direct Ink Writing] by a team from [https://engineering.vanderbilt.edu/me/ The Mechanical Engineering Department of Vanderbilt University]
* [https://www.sciencedirect.com/science/article/abs/pii/S2214860420307041 Multi-Material Additively Manufactured Composite Reactive Materials via Condinuous Filament Direct Ink Writing] by a team from [https://engineering.vanderbilt.edu/me/ The Mechanical Engineering Department of Vanderbilt University]
Line 240: Line 334:
* [https://www.sciencedirect.com/science/article/abs/pii/S0955221920306336 Effects of SiO2 Inclusions on Sintering and Permeability of NiCuZn Ferrite for Additive Manufacturing of Power Magnets] by a multi-disciplinary team from [https://vt.edu/ Virginia Tech]
* [https://www.sciencedirect.com/science/article/abs/pii/S0955221920306336 Effects of SiO2 Inclusions on Sintering and Permeability of NiCuZn Ferrite for Additive Manufacturing of Power Magnets] by a multi-disciplinary team from [https://vt.edu/ Virginia Tech]
* [https://www.sciencedirect.com/science/article/abs/pii/S0955221920306063#! Transparent Alumina Ceramics Fabricated by 3D Printing and Vacuum Sintering] by a team from the [https://www.alfred.edu/academics/colleges-schools/engineering/index.cfm Kazuo Inamori School of Engineering], [https://www.alfred.edu/academics/colleges-schools/college-ceramics/index.cfm New York State College of Ceramics], [https://www.alfred.edu/ Alfred University, Alfred, NY]
* [https://www.sciencedirect.com/science/article/abs/pii/S0955221920306063#! Transparent Alumina Ceramics Fabricated by 3D Printing and Vacuum Sintering] by a team from the [https://www.alfred.edu/academics/colleges-schools/engineering/index.cfm Kazuo Inamori School of Engineering], [https://www.alfred.edu/academics/colleges-schools/college-ceramics/index.cfm New York State College of Ceramics], [https://www.alfred.edu/ Alfred University, Alfred, NY]
* [https://aip.scitation.org/doi/full/10.1063/5.0004120 Additive Manufacturing and Characterization of AgI and AgI–Al2O3 Composite Electrolytes for Resistive Switching Devices], a paper from the [https://afresearchlab.com/ US Air Force Research Laboratory] using a Nordsen head on a Hyrel printer.
* [https://aip.scitation.org/doi/full/10.1063/5.0004120 Additive Manufacturing and Characterization of AgI and AgI–Al2O3 Composite Electrolytes for Resistive Switching Devices], a paper from the [https://afresearchlab.com/ US Air Force Research Laboratory] using a Nordson head on a Hyrel printer.
* [https://cdn.vanderbilt.edu/vu-my/wp-content/uploads/sites/2814/2020/06/19085235/Neely_Dissertation.pdf Additively Manufactured Thermite-based Energetics: Characterization and Applications], a PhD dissertation submitted to the [https://engineering.vanderbilt.edu/me/ Mechanical Enginnering Department of Vanderbilt University]
* [https://cdn.vanderbilt.edu/vu-my/wp-content/uploads/sites/2814/2020/06/19085235/Neely_Dissertation.pdf Additively Manufactured Thermite-based Energetics: Characterization and Applications], a PhD dissertation submitted to the [https://engineering.vanderbilt.edu/me/ Mechanical Enginnering Department of Vanderbilt University]
* [https://iopscience.iop.org/article/10.1088/1748-605X/aba40c/meta Effect of Sterilization Treatment on Mechanical Properties, Biodegradation, Bioactivity and Printability of GelMA Hydrogels (in Tissue Engineering)] by a team from the [https://uwaterloo.ca/waterloo-composite-biomaterial-systems-lab/ Composite Biomaterial Systems Laboratory of the University of Waterloo]
* [https://iopscience.iop.org/article/10.1088/1748-605X/aba40c/meta Effect of Sterilization Treatment on Mechanical Properties, Biodegradation, Bioactivity and Printability of GelMA Hydrogels (in Tissue Engineering)] by a team from the [https://uwaterloo.ca/waterloo-composite-biomaterial-systems-lab/ Composite Biomaterial Systems Laboratory of the University of Waterloo]
* [https://www.sciencedirect.com/science/article/pii/S0266353819335791 Impact of Filler Composition on Mechanical and Dynamic Response of 3-D Printed Silicone-based Nanocomposite Elastomers] using a [https://www.nordson.com/en Nordson Ultimus™ V] dispenser on Hyrel equipment, but a team from [http://lanl.gov Los Alamos National Laboratory], [http://sandia.gov Sandia National Laboratory], and [https://www.natureindex.com/institution-outputs/south-korea/department-of-energy-engineering-gntech/595e2817140ba06b4e8b4569 Department of Energy Engineering, Gyeongnam National University of Science and Technology (South Korea)]
* [https://www.sciencedirect.com/science/article/pii/S0266353819335791 Impact of Filler Composition on Mechanical and Dynamic Response of 3-D Printed Silicone-based Nanocomposite Elastomers] using a [https://www.nordson.com/en Nordson Ultimus™ V] dispenser on Hyrel equipment, by a team from [http://lanl.gov Los Alamos National Laboratory], [http://sandia.gov Sandia National Laboratory], and [https://www.natureindex.com/institution-outputs/south-korea/department-of-energy-engineering-gntech/595e2817140ba06b4e8b4569 Department of Energy Engineering, Gyeongnam National University of Science and Technology (South Korea)]
* [https://onlinelibrary.wiley.com/doi/abs/10.1002/adem.202000311 Fabrication and Characterization of Fe<sub>16</sub>N<sub>2</sub> Micro‐Flake Powders and Their Extrusion Based 3D Printing into Permanent Magnet Form] by a multi-disciplinary, multi-university team from Istanbul, Turkey
* [https://onlinelibrary.wiley.com/doi/abs/10.1002/adem.202000311 Fabrication and Characterization of Fe<sub>16</sub>N<sub>2</sub> Micro‐Flake Powders and Their Extrusion Based 3D Printing into Permanent Magnet Form] by a multi-disciplinary, multi-university team from Istanbul, Turkey
* [https://patents.google.com/patent/US20200181014A1/en Cement-Based Direct Ink for 3D Printing of Complex Architected Structures ], a patent application by a team including members of [https://msne.rice.edu/ Department of Materials Science and NanoEngineering, Rice University]
* [https://patents.google.com/patent/US20200181014A1/en Cement-Based Direct Ink for 3D Printing of Complex Architected Structures ], a patent application by a team including members of [https://msne.rice.edu/ Department of Materials Science and NanoEngineering, Rice University]
Line 264: Line 358:
* [https://pubs.acs.org/doi/abs/10.1021/acsami.9b15451 Cross-linkable Microgel Composite Matrix Bath for Embedded Bioprinting of Perfusable Tissue Constructs and Sculpting of Solid Objects] by a team from the [https://www.bme.ufl.edu/ University of Florida's Biomedical Engineering Department]
* [https://pubs.acs.org/doi/abs/10.1021/acsami.9b15451 Cross-linkable Microgel Composite Matrix Bath for Embedded Bioprinting of Perfusable Tissue Constructs and Sculpting of Solid Objects] by a team from the [https://www.bme.ufl.edu/ University of Florida's Biomedical Engineering Department]


==== Published in 2019 ====
== DIW/SEP/SSE, 2019 ==


* [https://digitalcommons.fiu.edu/cgi/viewcontent.cgi?article=5481&context=etd Graphene Foam-Reinforced Shape Memory Polymer Epoxy Composites], a PhD paper submitted to [https://www.fiu.edu Florida International University]
* [https://digitalcommons.fiu.edu/cgi/viewcontent.cgi?article=5481&context=etd Graphene Foam-Reinforced Shape Memory Polymer Epoxy Composites], a PhD paper submitted to [https://www.fiu.edu Florida International University]
Line 298: Line 392:
* [https://pubs.acs.org/doi/abs/10.1021/acs.molpharmaceut.8b00836 3D Printing of Poloxamer 407 Nanogel Discs and Their Applications in Adjuvant Ovarian Cancer Therapy] by a team from the [https://www.stlcop.edu/ St. Louis College of Pharmacy]
* [https://pubs.acs.org/doi/abs/10.1021/acs.molpharmaceut.8b00836 3D Printing of Poloxamer 407 Nanogel Discs and Their Applications in Adjuvant Ovarian Cancer Therapy] by a team from the [https://www.stlcop.edu/ St. Louis College of Pharmacy]


==== Published in 2018 ====
== DIW/SEP/SSE, 2018 ==


*[https://www.sciencedirect.com/science/article/pii/S2214289418300504 Nano Silica-Carbon-Silver Ternary Hybrid Induced Antimicrobial Composite Films for Food Packaging Application] by a team from the [https://www.tuskegee.edu/programs-courses/colleges-schools/coe/materials-science-and-engineering-home Materials Science & Enginnernig Department of Tuskegee University]
*[https://www.sciencedirect.com/science/article/pii/S2214289418300504 Nano Silica-Carbon-Silver Ternary Hybrid Induced Antimicrobial Composite Films for Food Packaging Application] by a team from the [https://www.tuskegee.edu/programs-courses/colleges-schools/coe/materials-science-and-engineering-home Materials Science & Enginnernig Department of Tuskegee University]
Line 304: Line 398:
*[https://onlinelibrary.wiley.com/doi/pdf/10.1002/adhm.201801353 Hydrocolloid Architectural Design of 3D Printed Scaffolds Controls the Volume and Functionality of Newly Formed Bone] by a team from the [https://sydney.edu.au/engineering/about/school-of-aerospace-mechanical-and-mechatronic-engineering.html/ School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney] and the [http://www.chemistry.unsw.edu.au/ School of Chemistry, University of New South Wales, Sydney]
*[https://onlinelibrary.wiley.com/doi/pdf/10.1002/adhm.201801353 Hydrocolloid Architectural Design of 3D Printed Scaffolds Controls the Volume and Functionality of Newly Formed Bone] by a team from the [https://sydney.edu.au/engineering/about/school-of-aerospace-mechanical-and-mechatronic-engineering.html/ School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney] and the [http://www.chemistry.unsw.edu.au/ School of Chemistry, University of New South Wales, Sydney]
*[https://onlinelibrary.wiley.com/doi/abs/10.1002/admt.201800343 Hydrocolloid Inks for 3D Printing of Porous Hydrogels] by a team with members from [https://engineering.tamu.edu/biomedical/index.html The Department of Biomedical Engineering, Texas A&M University], [https://www.bme.utexas.edu/ The Department of Biomedical Engineering, University of Texas at Austin], and [https://chme.nmsu.edu/ The Department of Chemical and Materials Engineering, New Mexico State University]
*[https://onlinelibrary.wiley.com/doi/abs/10.1002/admt.201800343 Hydrocolloid Inks for 3D Printing of Porous Hydrogels] by a team with members from [https://engineering.tamu.edu/biomedical/index.html The Department of Biomedical Engineering, Texas A&M University], [https://www.bme.utexas.edu/ The Department of Biomedical Engineering, University of Texas at Austin], and [https://chme.nmsu.edu/ The Department of Chemical and Materials Engineering, New Mexico State University]
*[https://www.sciencedirect.com/science/article/pii/S2214860417304013 Additive Manufacturing- A Review of 4D Printing and Future Applications] by a team from [https://www.esa.int/About_Us/ESTEC/ESTEC_European_Space_Research_and_Technology_Centre The European Space Research and Technology Center]
*[https://www.sciencedirect.com/science/article/pii/S0142961218306641 Improved In Situ Seeding of 3D Printed Scaffolds using Cell-Releasing Hydrogels] by a team with members from [https://engineering.tamu.edu/biomedical/index.html The Department of Biomedical Engineering, Texas A&M University], [https://www.bme.utexas.edu/ The Department of Biomedical Engineering, University of Texas at Austin], and [https://bioengineering.rice.edu/ The Department of Bioengineering, Rice University].
*[https://www.sciencedirect.com/science/article/pii/S0142961218306641 Improved In Situ Seeding of 3D Printed Scaffolds using Cell-Releasing Hydrogels] by a team with members from [https://engineering.tamu.edu/biomedical/index.html The Department of Biomedical Engineering, Texas A&M University], [https://www.bme.utexas.edu/ The Department of Biomedical Engineering, University of Texas at Austin], and [https://bioengineering.rice.edu/ The Department of Bioengineering, Rice University].
* [https://opencommons.uconn.edu/cgi/viewcontent.cgi?article=1601&context=srhonors_theses Effect of Silk-Based Hydrogel Topography on Intestinal Epithelial Cell Morphology and Wound Healing In Vitro] a thesis by Marisa E. Boch from the [https://cbe.engr.uconn.edu Department of Chemical and Biomolecular Engineering] at the [http://uconn.ecu University of Connecticut]
* [https://opencommons.uconn.edu/cgi/viewcontent.cgi?article=1601&context=srhonors_theses Effect of Silk-Based Hydrogel Topography on Intestinal Epithelial Cell Morphology and Wound Healing In Vitro] a thesis by Marisa E. Boch from the [https://cbe.engr.uconn.edu Department of Chemical and Biomolecular Engineering] at the [http://uconn.ecu University of Connecticut]
*[https://www.researchgate.net/profile/Homa_Maleki2/publication/325559793_Compressible_thermally_insulating_and_fire_retardant_aerogels_through_self-assembling_the_silk_fibroin_biopolymer_inside_the_silica_structure_-_An_approach_towards_3D_printing_of_aerogels/links/5b2ca6930f7e9b0df5ba7281/Compressible-thermally-insulating-and-fire-retardant-aerogels-through-self-assembling-the-silk-fibroin-biopolymer-inside-the-silica-structure-An-approach-towards-3D-printing-of-aerogels.pdf Compressible, Thermally Insulating, and Fire Retardant Aerogels through Self-Assembling Silk Fibroin Biopolymers Inside a Silica Structure - An Approach towards 3D Printing of Aerogels] by a team from the [https://www.uni-salzburg.at/index.php?id=210387&L=1 Chemistry and Physics of Materials Department] of [https://www.uni-salzburg.at/index.php?id=52&L=1 The University of Salzburg] and [https://www.chemie.uni-koeln.de/forschung_ac.html?&L=1 School of Inorganic Chemistry] at [http://www.portal.uni-koeln.de/9441.html?L=1 The University of Cologne].
*[https://www.researchgate.net/profile/Homa_Maleki2/publication/325559793_Compressible_thermally_insulating_and_fire_retardant_aerogels_through_self-assembling_the_silk_fibroin_biopolymer_inside_the_silica_structure_-_An_approach_towards_3D_printing_of_aerogels/links/5b2ca6930f7e9b0df5ba7281/Compressible-thermally-insulating-and-fire-retardant-aerogels-through-self-assembling-the-silk-fibroin-biopolymer-inside-the-silica-structure-An-approach-towards-3D-printing-of-aerogels.pdf Compressible, Thermally Insulating, and Fire Retardant Aerogels through Self-Assembling Silk Fibroin Biopolymers Inside a Silica Structure - An Approach towards 3D Printing of Aerogels] by a team from the [https://www.uni-salzburg.at/index.php?id=210387&L=1 Chemistry and Physics of Materials Department] of [https://www.uni-salzburg.at/index.php?id=52&L=1 The University of Salzburg] and [https://www.chemie.uni-koeln.de/forschung_ac.html?&L=1 School of Inorganic Chemistry] at [http://www.portal.uni-koeln.de/9441.html?L=1 The University of Cologne].
* [https://www.nature.com/articles/s41467-018-04800-w.pdf Covalent-Supramolecular Hybrid Polymers as Muscle-Inspired Anisotropic Actuators] by an interdisciplinary team from [https://www.northwestern.edu Northwestern University]. ''The 3D printing experiments were supported by the '''[http://www.wpafb.af.mil/afrl.aspx Air Force Research Laboratory]''' under agreement number FA8650-15-2-5518''
* [https://www.nature.com/articles/s41467-018-04800-w.pdf Covalent-Supramolecular Hybrid Polymers as Muscle-Inspired Anisotropic Actuators] by an interdisciplinary team from [https://www.northwestern.edu Northwestern University]. ''The 3D printing experiments were supported by the '''[http://www.wpafb.af.mil/afrl.aspx Air Force Research Laboratory]''' under agreement number FA8650-15-2-5518''
*[http://pubs.rsc.org/en/content/articlelanding/2018/mh/c8mh00296g#!divAbstract Fully 2D and 3D Printed Anisotropic Mechanoluminescent Objects and their Application for Energy Harvesting in the Dark] by [https://scholars.huji.ac.il/magdassi/home Prof. Shlomo Magdassi's] group at [http://new.huji.ac.il/en The Hebrew University of Jerusalem].
*[http://pubs.rsc.org/en/content/articlelanding/2018/mh/c8mh00296g#!divAbstract Fully 2D and 3D Printed Anisotropic Mechanoluminescent Objects and their Application for Energy Harvesting in the Dark] by [https://scholars.huji.ac.il/magdassi/home Prof. Shlomo Magdassi's] group at [http://new.huji.ac.il/en The Hebrew University of Jerusalem].
Line 318: Line 409:
* [https://pubs.acs.org/doi/abs/10.1021/acs.jpcc.8b00580 Tailoring the Porosity and Microstructure of Printed Graphene Electrodes via Polymer Phase Inversion] by a team from [http://northwestern.edu Northwestern University]
* [https://pubs.acs.org/doi/abs/10.1021/acs.jpcc.8b00580 Tailoring the Porosity and Microstructure of Printed Graphene Electrodes via Polymer Phase Inversion] by a team from [http://northwestern.edu Northwestern University]


==== Published in 2017 ====
== DIW/SEP/SSE, 2017 ==


* [https://static1.squarespace.com/static/59581b474c8b03b8a580b4ae/t/5a5c280bec212d764ffc3203/1515989014007/Bioink+Paper.pdf Injectable Nanocomposite Hydrogels for Cell Delivery and Bioprinting] by a team by a team from three disciplines of [http://www.tamu.edu/ Texas A&M University].
* [https://static1.squarespace.com/static/59581b474c8b03b8a580b4ae/t/5a5c280bec212d764ffc3203/1515989014007/Bioink+Paper.pdf Injectable Nanocomposite Hydrogels for Cell Delivery and Bioprinting] by a team by a team from three disciplines of [http://www.tamu.edu/ Texas A&M University].
Line 333: Line 424:
*[http://hyrel3d.net/papers/Design_Meth_Additive_Mfg_Magnetic_Comp_YYan_2017.pdf Design Methodology and Materials for Additive Manufacturing of Magnetic Components] - PhD Thesis of Y. Yan, [http://vt.edu Virginia Tech]
*[http://hyrel3d.net/papers/Design_Meth_Additive_Mfg_Magnetic_Comp_YYan_2017.pdf Design Methodology and Materials for Additive Manufacturing of Magnetic Components] - PhD Thesis of Y. Yan, [http://vt.edu Virginia Tech]


==== Published in 2016 ====
== DIW/SEP/SSE, 2016 ==


*[https://pubs.acs.org/doi/pdf/10.1021/acsami.6b11643 High Performance, 3D-Printable Dielectric Nanocomposites for Millimeter Wave Devices] by a team from the [https://www.ll.mit.edu/ Lincoln Laboratory at the Massachusetts Institute of Technology (MIT)]
*[https://pubs.acs.org/doi/pdf/10.1021/acsami.6b11643 High Performance, 3D-Printable Dielectric Nanocomposites for Millimeter Wave Devices] by a team from the [https://www.ll.mit.edu/ Lincoln Laboratory at the Massachusetts Institute of Technology (MIT)]
*[http://www.ieeeconfpublishing.org/cpir/UploadedFiles/Additive%20Manufacturing%20of%20Magnetic%20Components%20for%20Heterogeneous%20Integration.pdf Additive Manufacturing of Magnetic Components for Heterogeneous Integration] by Dr. Y. Yan (and others), [http://vt.edu Virginia Tech]
*[http://www.ieeeconfpublishing.org/cpir/UploadedFiles/Additive%20Manufacturing%20of%20Magnetic%20Components%20for%20Heterogeneous%20Integration.pdf Additive Manufacturing of Magnetic Components for Heterogeneous Integration] by Dr. Y. Yan (and others), [http://vt.edu Virginia Tech]
*[http://hyrel3d.net/papers/Sydney_Bioprinting_Presentation.pptx Bioprinting Defined Heterogeneous Cellular Microenvironments] from [http://sydney.edu.au/engineering/research/centres/biomaterials-tissue-engineering/ The Biomaterials and Tissue Engineering Research Unit] of the [http://web.aeromech.usyd.edu.au/index.php Aerospace, Mechanical and Mechatronic Engineering Department] of [http://sydney.edu.au The University of Sydney]
*[http://hyrel3d.net/papers/Sydney_Bioprinting_Presentation.pptx Bioprinting Defined Heterogeneous Cellular Microenvironments] from [http://sydney.edu.au/engineering/research/centres/biomaterials-tissue-engineering/ The Biomaterials and Tissue Engineering Research Unit] of the [http://web.aeromech.usyd.edu.au/index.php Aerospace, Mechanical and Mechatronic Engineering Department] of [http://sydney.edu.au The University of Sydney]
*[http://hyrel3d.net/papers/3D-4D_Printing_and_Stretchable_Conductive_Adhesives.pdf A Novel Approach to Integrating 3D/4D Printing and Stretchable Conductive Adhesive Technologies for High Frequency Packaging Applications] by a team from [http://www.gatech.edu/ Georgia Tech]
*[http://hyrel3d.net/papers/3D_Printed_Scaffolds_to_Repair_Large_Bone_Deficits.pdf Design and Fabrication of 3D Printed Scaffolds with a Mechanical Strength Comparable to Cortical Bone to Repair Large Bone Defects] in [http://www.nature.com/index.html Nature.com's] [http://www.nature.com/srep/ Scientific Reports]
*[http://hyrel3d.net/papers/3D_Printed_Scaffolds_to_Repair_Large_Bone_Deficits.pdf Design and Fabrication of 3D Printed Scaffolds with a Mechanical Strength Comparable to Cortical Bone to Repair Large Bone Defects] in [http://www.nature.com/index.html Nature.com's] [http://www.nature.com/srep/ Scientific Reports]
*[http://hyrel3d.net/papers/Eumlsion_Inks_for_3D_Printing.pdf Emulsion Inks for 3D Printing of High Porosity Materials] in the [http://www.frontiersin.org/10.3389/conf.FBIOE.2016.01.02721/2893/10th_World_Biomaterials_Congress/all_events/event_abstract Macromolecular Journals]
*[http://hyrel3d.net/papers/Eumlsion_Inks_for_3D_Printing.pdf Emulsion Inks for 3D Printing of High Porosity Materials] in the [http://www.frontiersin.org/10.3389/conf.FBIOE.2016.01.02721/2893/10th_World_Biomaterials_Congress/all_events/event_abstract Macromolecular Journals]
*[https://www.dst.defence.gov.au/sites/default/files/events/documents/WCSD%20Presentation.pdf 3D Printed Energetics] by the [https://www.dst.defence.gov.au/research-division/weapons-and-combat-systems-division Weapons and Combat Systems Division] of the [http://defence.gov.au Australian Department of Defense]
*[https://www.dst.defence.gov.au/sites/default/files/events/documents/WCSD%20Presentation.pdf 3D Printed Energetics] by the [https://www.dst.defence.gov.au/research-division/weapons-and-combat-systems-division Weapons and Combat Systems Division] of the [http://defence.gov.au Australian Department of Defense]


==== Published in 2015====
== DIW/SEP/SSE, 2015 ==


*[http://c.ymcdn.com/sites/www.surfaces.org/resource/collection/4423FA75-D640-4955-A412-240A38EF1FAA/2015_Elizabeth_Cosgriffpdf.pdf 3D Printing of High Porosity, Biodegradable Foams with Cure on Dispense] - Presentation by Elizabeth Cosgriff-Hernández of [https://engineering.tamu.edu/biomedical Department of Biomedical Engineering], [http://www.tamu.edu Texas A&M University]
*[http://c.ymcdn.com/sites/www.surfaces.org/resource/collection/4423FA75-D640-4955-A412-240A38EF1FAA/2015_Elizabeth_Cosgriffpdf.pdf 3D Printing of High Porosity, Biodegradable Foams with Cure on Dispense] - Presentation by Elizabeth Cosgriff-Hernández of [https://engineering.tamu.edu/biomedical Department of Biomedical Engineering], [http://www.tamu.edu Texas A&M University]
Line 350: Line 440:
*[http://pubs.acs.org/doi/abs/10.1021/nn507488s Bioactive Nanoengineered Hydrogels for Bone Tissue Engineering: A Growth-Factor-Free Approach] in [http://www.acs.org/content/acs/en.html The American Chemical Society's] [http://pubs.acs.org/journal/ancac3 ACS Nano]
*[http://pubs.acs.org/doi/abs/10.1021/nn507488s Bioactive Nanoengineered Hydrogels for Bone Tissue Engineering: A Growth-Factor-Free Approach] in [http://www.acs.org/content/acs/en.html The American Chemical Society's] [http://pubs.acs.org/journal/ancac3 ACS Nano]


==== Published in 2014 ====
== DIW/SEP/SSE, 2014 ==


*[http://www.anzors.org.au/pdfs/2014-proceedings.pdf Development of 3D printed Ceramic scaffolds for Treatment of Segmental Bone Defects] from [http://sydney.edu.au/engineering/research/centres/biomaterials-tissue-engineering/ The Biomaterials and Tissue Engineering Research Unit] of the [http://web.aeromech.usyd.edu.au/index.php Aerospace, Mechanical and Mechatronic Engineering Department] of [http://sydney.edu.au The University of Sydney]
*[http://www.anzors.org.au/pdfs/2014-proceedings.pdf Development of 3D printed Ceramic scaffolds for Treatment of Segmental Bone Defects] from [http://sydney.edu.au/engineering/research/centres/biomaterials-tissue-engineering/ The Biomaterials and Tissue Engineering Research Unit] of the [http://web.aeromech.usyd.edu.au/index.php Aerospace, Mechanical and Mechatronic Engineering Department] of [http://sydney.edu.au The University of Sydney]


== [[Reservoir_Heads|Heated Reservoir Printing (DPE, HME)]] ==
== '''[[Reservoir_Heads|Heated Reservoir Printing (DPE, HME)]]''' ==
 
Also known as '''DPE''' (Direct Powder Extrusion) or '''HME''' (Hot Melt Extrusion).


Also known as DPE (Direct Powder Extrusion) or HME (Hot Melt Extrusion).
== [[Reservoir_Heads|DPE, HME 2023]] ==


* [https://www.sciencedirect.com/science/article/abs/pii/S0939641123003119 Combination Techniques Towards Novel Drug Delivery Systems Manufacturing: 3D PCL Scaffolds Enriched With Tetracycline-loaded PVP Nanoparticles] by a team from [https://www.marmara.edu.tr/en Marmara University, Turkey]
* [https://onlinelibrary.wiley.com/doi/pdf/10.1002/adma.202307297 Fully Recyclable Cured Polymers for Sustainable 3D Printing] by a team from the [https://www.shenkar.ac.il/en/departments/engineering-plastics-department Department of Polymer Materials Engineering, Pernick Faculty of Engineering, Shenkar College, Israel] and the [https://nano.huji.ac.il/ Institute of Chemistry and Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem]
* [https://www.mdpi.com/2310-2861/9/9/766/pdf Three-Dimensional Printing Parameter Optimization for Salmon Gelatin Gels Using Artificial Neural Networks and Response Surface Methodology: Influence on Physicochemical and Digestibility Properties] by a team from [https://www.ualberta.ca/agricultural-food-nutritional-science/index.html Department of Agricultural, Food and Nutritional Science, University of Alberta,], [https://quimica.uchile.cl/departamentos/ciencias-de-los-alimentos-y-tecnologia-quimica/presentacion Department of Food Science and Chemical Technology, Universidad de Chile,], and the Department of Food Engineering and the Department of Basic Sciences, [https://www.ubiobio.cl/w/ Universidad del Bío-Bío, Chile]
* [https://openaccess.marmara.edu.tr/entities/publication/d598e954-c38a-4ec5-ad40-a0f941710dc1  Production of Essential Oil Coated Polycapralactone Scaffold With Antibacterial Properties ] by an author from [https://www.marmara.edu.tr/en Marmara University, Istanbul]
* [https://arxiv.org/pdf/2309.01088.pdf Geometry, Mechanics and Actuation of Intrinsically Curved Folds] by a team from [http://www.eng.cam.ac.uk/ Department of Engineering, University of Cambridge, Cambridge, UK]
* [https://www.degruyter.com/document/doi/10.1515/polyeng-2023-0071/html Fabrication of Avian Eggshell Membrane Derived Dispersed Collagen Hydrogels for Potential Bone Regeneration] by a team from [https://home.iitd.ac.in/ Indian Institute of Technology, Delhi]
* [https://onlinelibrary.wiley.com/doi/pdf/10.1002/admt.202300144 Toward Fully Printed Soft Actuators: UV-Assisted Printing of Liquid Crystal Elastomers and Biphasic Liquid Metal Conductors] by a team from the [https://www.uc.pt/en/fctuc/deec/Department Institute of Systems and Robotics Department of Electrical and Computer Engineering University of Coimbra]
* [https://www.sciencedirect.com/science/article/abs/pii/S0266353823000489#preview-section-snippets Controlled Directionality in 3D Printing of Graphite-Reinforced Polymer Composite with Enhanced Mechanical Properties] by a team from the [https://www.iitsystem.ac.in/ Indian Institute of Technology]'s [http://www.iitkgp.ac.in/ Kharagpur] and [https://iitgn.ac.in/ Gandhinagar] campuses, and the [https://www.innovationpark.psu.edu/park-news/latest-news/569-join-us-for-the-carbon-science-centre-of-excellence Carbon Science Centre of Excellence, Morgan Advanced Materials, Penn State University]
* [https://pubs.acs.org/doi/abs/10.1021/acs.langmuir.2c02936 3D Printed Hierarchical Porous Poly(ε-caprolactone) Scaffolds from Pickering High Internal Phase Emulsion Templating] by a team from the [https://textile.iitd.ac.in/ Department of Textile and Fibre Engineering, Indian Institute of Technology, Delhi]
* [https://aip.scitation.org/doi/full/10.1063/5.0133995 Do we need perfect mixing between fuel and oxidizer to maximize the energy release rate of energetic nanocomposites?] by a team from the [https://www.cee.ucr.edu/ Department of Chemical and Environmental Engineering, University of California, Riverside] and the [https://me.stanford.edu/ Department of Mechanical Engineering, Stanford University]


==== Published in 2022 ====
== [[Reservoir_Heads|DPE, HME 2022]] ==


* [https://pubs.acs.org/doi/abs/10.1021/acsami.2c14815 3D Printing of Liquid Metal Embedded Elastomers for Soft Thermal and Electrical Materials] by a team from [https://www.cmu.edu/ Carnegie Mellon University]'s  [https://www.meche.engineering.cmu.edu/ Mechanical] and [https://www.cheme.engineering.cmu.edu/ Chemical] Engineering Departments; the [https://www.erg.cuhk.edu.hk/erg/MechanicalAndAutomationEngineering Department of Mechanical and Automation Engineering, Chinese University of Hong Kong], and the [https://me.snu.ac.kr/en Department of Mechanical Engineering, Seoul National University]
* [https://onlinelibrary.wiley.com/doi/pdf/10.1002/aisy.202200280 Robotic Pick-and-Place Operations in Multifunctional Liquid Crystal Elastomers] by a team from [https://www.tue.nl/en/ Eindhoven University of Technology]'s [https://www.tue.nl/en/research/institutes/institute-for-complex-molecular-systems/ Institute for Complex Molecular Systems] and [https://www.tue.nl/en/our-university/departments/chemical-engineering-and-chemistry/the-department/ Department of Chemical Engineering and Chemistry], the [https://inma.unizar-csic.es/en/home/ Instituto de Nanociencia y Materiales de Aragón (INMA)Departamento de Física de la Materia CondensadaCSIC-Universidad de Zaragoza], the [https://www.ciber-bbn.es/en CIBER in Bioengineering, Biomaterials and Nanomedicine], and the [ SCNU-TUE Joint Lab of Device Integrated Responsive Materials (DIRM), National Center for International Research on Green Optoelectronics, South China Normal University]
* [https://asmedigitalcollection.asme.org/SMASIS/proceedings-abstract/SMASIS2022/86274/V001T05A006/1150813 Development of Embeddable Additive Manufacturing Microsensors for Structural Health Monitoring], by a team from [https://erau.edu/ Embry-Riddle Aeronautical University]
* [https://digitalcommons.library.umaine.edu/cgi/viewcontent.cgi?article=4693&context=etd Continuous, Non-Destructive Detection of Surface Bacterial Growth with Bioinspired Vascularized PolymersGrowth with Bioinspired Vascularized Polymers], submitted to the University of Maine in pursuit of a Master of Science in Biomedical Engineering
* [https://www.chinesechemsoc.org/doi/pdf/10.31635/ccschem.022.202202362 A Novel Dynamic Polymer Synthesis via Chlorinated Solvent Quenched Depolymerization] by a team from [https://www.ornl.gov Oak Ridge National Laboratory]'s [https://www.ornl.gov/division/csd Chemical Services Division] and [https://www.ornl.gov/facility/cnms Center for Nanophase Materials Sciences]; [https://utk.edu/ University of Tennessee, Knoxville]'s [https://chem.utk.edu/ Department of Chemistry] and [https://cbe.utk.edu/ Department of Chemical and Biomolecular Engineering]; and [https://jiaowuchu.buct.edu.cn/en_jwc/mainm.htm Beijing University of Chemical Technology]
* [https://pubs.acs.org/doi/abs/10.1021/acsapm.2c00933 Alginate–Sodium Sulfate Decahydrate Phase Change Composite with Extended Stability] by a team from [https://www.ornl.gov/division/csd Chemical Sciences Division, Oak Ridge National Laboratory], [https://www.ornl.gov/division/buildings-and-transportation-science Building and Transportation Sciences Division, Oak Ridge National Laboratory], and the [https://chem.utk.edu/ Department of Chemistry, University of Tennessee, Knoxville]
* [https://pubs.acs.org/doi/abs/10.1021/acsapm.2c00933 Alginate–Sodium Sulfate Decahydrate Phase Change Composite with Extended Stability] by a team from [https://www.ornl.gov/division/csd Chemical Sciences Division, Oak Ridge National Laboratory], [https://www.ornl.gov/division/buildings-and-transportation-science Building and Transportation Sciences Division, Oak Ridge National Laboratory], and the [https://chem.utk.edu/ Department of Chemistry, University of Tennessee, Knoxville]
* [https://chemrxiv.org/engage/api-gateway/chemrxiv/assets/orp/resource/item/62f67a4342ddf53f75b8d40c/original/continuous-non-destructive-detection-of-microorganism-growth-at-buried-interfaces-with-vascularized-polymers.pdf Continuous, Non-Destructive Detection of Microorganism Growth at Buried Interfaces with Vascularized Polymers] by a team from the [https://gsbse.umaine.edu/ Biomedical Science and Engineering, University of Maine], the [https://mems.duke.edu/ Department of Mechanical Engineering and Material Science, Duke University], and the [Pritzker School of Molecular Engineering, University of Chicago https://pme.uchicago.edu/]
* [https://chemrxiv.org/engage/api-gateway/chemrxiv/assets/orp/resource/item/62f67a4342ddf53f75b8d40c/original/continuous-non-destructive-detection-of-microorganism-growth-at-buried-interfaces-with-vascularized-polymers.pdf Continuous, Non-Destructive Detection of Microorganism Growth at Buried Interfaces with Vascularized Polymers] by a team from the [https://gsbse.umaine.edu/ Biomedical Science and Engineering, University of Maine], the [https://mems.duke.edu/ Department of Mechanical Engineering and Material Science, Duke University], and the [Pritzker School of Molecular Engineering, University of Chicago https://pme.uchicago.edu/]
Line 372: Line 479:
* [https://onlinelibrary.wiley.com/doi/abs/10.1002/jbm.a.37363 An Additive Manufacturing-based 3D Printed Poly ɛ-CaproLactone (PCL) / Alginate Sulfate / Cxtracellular Matrix Construct for Nasal Cartilage Regeneration], by a team from [https://www.tamiu.edu/ Texas A&M International University], [https://iums.ac.ir/en Iran University of Medical Sciences], and the [https://ut.ac.ir/en University of Tehran]
* [https://onlinelibrary.wiley.com/doi/abs/10.1002/jbm.a.37363 An Additive Manufacturing-based 3D Printed Poly ɛ-CaproLactone (PCL) / Alginate Sulfate / Cxtracellular Matrix Construct for Nasal Cartilage Regeneration], by a team from [https://www.tamiu.edu/ Texas A&M International University], [https://iums.ac.ir/en Iran University of Medical Sciences], and the [https://ut.ac.ir/en University of Tehran]


==== Published in 2021 ====
== [[Reservoir_Heads|DPE, HME 2021]] ==


*[https://www.pharmaexcipients.com/wp-content/uploads/2021/11/Effects-of-crosslinking-on-the-physical-solid-state-and-dissolution-properties-of-3D-printed-theophylline-tablets.pdf Effects of Crosslinking on the Physical Solid-State and Dissolution Properties of 3D-printed Theophylline Tablets] by a team from the [https://www.farmaatsia.ut.ee/en Institute of Pharmacy] and the [https://www.biomeditsiin.ut.ee/en Institute of Biomedicine and Translational Medicine] of the [https://www.ut.ee/en University of Tartu] and from the [https://researchportal.helsinki.fi/en/organisations/division-of-pharmaceutical-chemistry-and-technology Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki]
*[https://www.pharmaexcipients.com/wp-content/uploads/2021/11/Effects-of-crosslinking-on-the-physical-solid-state-and-dissolution-properties-of-3D-printed-theophylline-tablets.pdf Effects of Crosslinking on the Physical Solid-State and Dissolution Properties of 3D-printed Theophylline Tablets] by a team from the [https://www.farmaatsia.ut.ee/en Institute of Pharmacy] and the [https://www.biomeditsiin.ut.ee/en Institute of Biomedicine and Translational Medicine] of the [https://www.ut.ee/en University of Tartu] and from the [https://researchportal.helsinki.fi/en/organisations/division-of-pharmaceutical-chemistry-and-technology Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki]
Line 384: Line 491:
* [https://pubs.acs.org/doi/abs/10.1021/acs.biomac.1c00105 3D-Printed Enzyme-Embedded Plastics] by a team from [https://www.scionresearch.com/ Scion], a Crown Research Institute in New Zealand
* [https://pubs.acs.org/doi/abs/10.1021/acs.biomac.1c00105 3D-Printed Enzyme-Embedded Plastics] by a team from [https://www.scionresearch.com/ Scion], a Crown Research Institute in New Zealand


==== Published in 2020 ====
== [[Reservoir_Heads|DPE, HME 2020]] ==


* [https://ir.lib.uwo.ca/cgi/viewcontent.cgi?article=10152&context=etd Study of Recyclable and Repairable Dynamic Covalent Polymers for Sustainable 3D Printing Development for Sustainable 3D Printing Development], a thesis for a PhD in Mechanical and Materials Engineering submitted to [https://www.eng.uwo.ca/mechanical/graduate/ The University of Western Ontario]
* [https://ir.lib.uwo.ca/cgi/viewcontent.cgi?article=10152&context=etd Study of Recyclable and Repairable Dynamic Covalent Polymers for Sustainable 3D Printing Development for Sustainable 3D Printing Development], a thesis for a PhD in Mechanical and Materials Engineering submitted to [https://www.eng.uwo.ca/mechanical/graduate/ The University of Western Ontario]
* [https://www.sciencedirect.com/science/article/abs/pii/S1742706120307650 4D Printing of Shape-memory Polymeric Scaffolds for Adaptive Biomedical Implantation] by a team from the [http://catalog.missouri.edu/undergraduategraduate/collegeofengineering/mechanicalandaerospaceengineering/ Department of Mechanical and Aerospace Engineering], the [https://medicine.missouri.edu/departments/surgery Department of Surgery], the [https://foodscience.missouri.edu/ Food Science Program, Division of Food Systems & Bioengineering], and the [https://engineering.missouri.edu/academics/bbce/ Department of Biomedical, Biological & Chemical Engineering] of the [https://missouri.edu/ University of Missouri]
* [https://www.youtube.com/watch?v=dKa1PfS6HrU Toward Multifunctional Liquid Metal Composites], a video by a team from the [https://www.meche.engineering.cmu.edu Department of Mechanical Engineering, Carnegie Mellon University]
* [https://www.youtube.com/watch?v=dKa1PfS6HrU Toward Multifunctional Liquid Metal Composites], a video by a team from the [https://www.meche.engineering.cmu.edu Department of Mechanical Engineering, Carnegie Mellon University]
* [https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202002929 Controlled Assembly of Liquid Metal Inclusions as a General Approach for Multifunctional Composites] by a team from the [https://www.meche.engineering.cmu.edu Department of Mechanical Engineering, Carnegie Mellon University]
* [https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202002929 Controlled Assembly of Liquid Metal Inclusions as a General Approach for Multifunctional Composites] by a team from the [https://www.meche.engineering.cmu.edu Department of Mechanical Engineering, Carnegie Mellon University]
Line 397: Line 503:
* [https://www.sciencedirect.com/science/article/pii/S1751616119315656 Mechanical Properties of Nanocomposite Biomaterials improved by extrusion during Direct Ink Writing] by a team from the Composite Biomaterial Systems Laboratory of the [https://uwaterloo.ca/systems-design-engineering/ Systems Design Engineering School at the University of Waterloo, Canada]
* [https://www.sciencedirect.com/science/article/pii/S1751616119315656 Mechanical Properties of Nanocomposite Biomaterials improved by extrusion during Direct Ink Writing] by a team from the Composite Biomaterial Systems Laboratory of the [https://uwaterloo.ca/systems-design-engineering/ Systems Design Engineering School at the University of Waterloo, Canada]


==== Published in 2019 ====
== [[Reservoir_Heads|DPE, HME 2019]] ==


* [https://onlinelibrary.wiley.com/doi/abs/10.1002/adbi.201900216 Vascularized Polymers Spatially Control Bacterial Cells on Surfaces] by a team from [https://umaine.edu/chb/ the Department of Chemical and Biomedical Engineering, University of Maine]
* [https://onlinelibrary.wiley.com/doi/abs/10.1002/adbi.201900216 Vascularized Polymers Spatially Control Bacterial Cells on Surfaces] by a team from [https://umaine.edu/chb/ the Department of Chemical and Biomedical Engineering, University of Maine]
Line 413: Line 519:
* [https://patents.google.com/patent/US20190022928A1/en Additive Processing of Fluoropolymers], a patent application by a team from [https://www.3m.com/ 3M]
* [https://patents.google.com/patent/US20190022928A1/en Additive Processing of Fluoropolymers], a patent application by a team from [https://www.3m.com/ 3M]


==== Published in 2018 ====
== [[Reservoir_Heads|DPE, HME 2018]] ==


* [https://www.researchgate.net/publication/329216477_Molecularly-Engineered_4D-Printed_Liquid_Crystal_Elastomer_Actuators Molecularly-Engineered, 4D-Printed Liquid Crystal Elastomer Actuators] by a team from the [https://be.utdallas.edu/ Bioengineering Department of University of Texas, Dallas]
* [https://www.researchgate.net/profile/David_Ballard6/publication/329000422_3D_printing_of_surgical_hernia_meshes_impregnated_with_contrast_agents_in_vitro_proof_of_concept_with_imaging_characteristics_on_computed_tomography/links/5bef0e1892851c6b27c495d2/3D-printing-of-surgical-hernia-meshes-impregnated-with-contrast-agents-in-vitro-proof-of-concept-with-imaging-characteristics-on-computed-tomography.pdf 3D Printing of Surgical Hernia Meshes Impregnated with Contrast Agents: In Vitro Proof of Concept with Imaging Characteristics on Computed Tomography] by a team from [https://wustl.edu/ Washington University in St. Louis]
* [https://www.researchgate.net/profile/David_Ballard6/publication/329000422_3D_printing_of_surgical_hernia_meshes_impregnated_with_contrast_agents_in_vitro_proof_of_concept_with_imaging_characteristics_on_computed_tomography/links/5bef0e1892851c6b27c495d2/3D-printing-of-surgical-hernia-meshes-impregnated-with-contrast-agents-in-vitro-proof-of-concept-with-imaging-characteristics-on-computed-tomography.pdf 3D Printing of Surgical Hernia Meshes Impregnated with Contrast Agents: In Vitro Proof of Concept with Imaging Characteristics on Computed Tomography] by a team from [https://wustl.edu/ Washington University in St. Louis]
* [https://www.sciencedirect.com/science/article/pii/S2405886618300113 Composites of Fatty Acids and Ceramic Powders are Versatile Biomaterials for Personalized Implants and Controlled Release of Pharmaceuticals] by a team from [https://www.sdu.dk/en/ The University of Southern Denmark]
* [https://www.sciencedirect.com/science/article/pii/S2405886618300113 Composites of Fatty Acids and Ceramic Powders are Versatile Biomaterials for Personalized Implants and Controlled Release of Pharmaceuticals] by a team from [https://www.sdu.dk/en/ The University of Southern Denmark]
Line 421: Line 526:
* [http://pubs.acs.org/doi/abs/10.1021/acs.langmuir.7b02540 Nanoengineered Colloidal Inks for 3D Bioprinting] in [http://www.acs.org/content/acs/en.html The American Chemical Society's] [http://pubs.acs.org/journal/langd5 Langmuir]
* [http://pubs.acs.org/doi/abs/10.1021/acs.langmuir.7b02540 Nanoengineered Colloidal Inks for 3D Bioprinting] in [http://www.acs.org/content/acs/en.html The American Chemical Society's] [http://pubs.acs.org/journal/langd5 Langmuir]


==== Published in 2017 ====
== [[Reservoir_Heads|DPE, HME 2017]] ==


* [http://pubs.acs.org/doi/abs/10.1021/acsami.7b13602 Shear-Thinning and Thermo-Reversible Nanoengineered Inks for 3D Bioprinting] in the [http://www.acs.org/content/acs/en.html American Chemical Society's] [http://pubs.acs.org/toc/aamick/current Applied Materials & Interfaces Journal]
* [http://pubs.acs.org/doi/abs/10.1021/acsami.7b13602 Shear-Thinning and Thermo-Reversible Nanoengineered Inks for 3D Bioprinting] in the [http://www.acs.org/content/acs/en.html American Chemical Society's] [http://pubs.acs.org/toc/aamick/current Applied Materials & Interfaces Journal]
*[http://pubs.acs.org/doi/abs/10.1021/acsami.7b11851 4D Printing of Liquid Crystal Elastomers] by a team from the [https://be.utdallas.edu/ Bioengineering Department of the University of Texas, Dallas]
*[http://scholar.google.com/scholar_url?url=http://onlinelibrary.wiley.com/doi/10.1002/app.45083/full&hl=en&sa=X&scisig=AAGBfm08tdsc-a6hdNeaw1xB7JInXsZCeg&nossl=1&oi=scholaralrt Influence of Shear Thinning and Material Flow on Robotic Dispensing of PEG] in [http://www.acs.org/content/acs/en.html The American Chemical Society's] [http://pubs.acs.org/journal/ancac3 ACS Nano]
*[http://scholar.google.com/scholar_url?url=http://onlinelibrary.wiley.com/doi/10.1002/app.45083/full&hl=en&sa=X&scisig=AAGBfm08tdsc-a6hdNeaw1xB7JInXsZCeg&nossl=1&oi=scholaralrt Influence of Shear Thinning and Material Flow on Robotic Dispensing of PEG] in [http://www.acs.org/content/acs/en.html The American Chemical Society's] [http://pubs.acs.org/journal/ancac3 ACS Nano]


== [[Filament_Heads|Filament Printing (HME, FFF, FDM)]] ==
== '''[[Filament_Heads|Filament Printing (FFF, FDM)]]''' ==
 
Also known as '''FFF''' (Fused Filament Fabrication) or '''FDM''' (Fused Deposition Modeling).
 
== FDM/HFF, 2023 ==


Also known as HME (Hot Melt Extrusion), FFF (Fused Filament Fabrication), or FDM (Fused Deposition Modeling).
* [https://www.sciencedirect.com/science/article/abs/pii/S235243162300158X 3D Printable Spatial Fractal Structures Undergoing Auxetic Elasticity] by a team from [http://en.hit.edu.cn/ Harbin Institute of Technology], [https://www.ntu.edu.sg/ Nanyang Technological University], [https://www.cityu.edu.hk/ City University of Hong Kong], and [https://www.northumbria.ac.uk/ Northumbria University]
* [https://pubs.aip.org/aip/jap/article-abstract/134/19/194105/2922082/The-effect-of-porosity-on-flexoelectricity-in-3D The Effect of Porosity on Flexoelectricity in 3d Printed Aluminum/polyvinylidene Fluoride Composite] by a team from [https://www.purdue.edu/ Purdue University]
* [https://www.sciencedirect.com/science/article/abs/pii/S2214785323047715 Effect of Input Variables on the Mechanical Properties of Additively Manufactured PEEK Thermoplastics] by a team from [https://www.etsmtl.ca/en/ets/governance/deans-and-departments/mechanical-engineering-department Department of Mechanical Engineering, École de Technologie Supérieure, Montréal], [https://ica.cnrs.fr/the-institute/ Institut Clément Ader, UMR CNRS 5312, University of Toulouse], and [https://oraprdnt.uqtr.uquebec.ca/pls/public/gscw031?owa_no_site=4724 Department of Mechanical Engineering, Innovations Institute in Ecomaterials, Ecoproducts and Ecoenergy (I2E3), Université du Québec à Trois-Rivières]
* [https://ieeexplore.ieee.org/abstract/document/10236995 A Novel Feature Representation Method Based on Similarity Between Statistical Distributions of Acoustic Emission Waveforms] by a team from [https://jwc.shmtu.edu.cn/en/8563/list.htm College of Logistics Engineering, Shanghai Maritime University, Shanghai, China] and [http://sklofp.zju.edu.cn/sklen/ College of Mechanical Engineering, State Key Laboratory of Fluid Power Transmission and Control, Zhejiang University, Hangzhou, China]
* [https://vtechworks.lib.vt.edu/bitstream/handle/10919/115657/Chung_J_D_2023.pdf?sequence=1&isAllowed=y Process Monitoring and Control of Advanced Manufacturing based on Physics-Assisted Machine Learning], a dissertation submitted to the [https://www.ise.vt.edu/ Industrial and Systems Engineering department of Virginia Tech]
* [https://iopscience.iop.org/article/10.1088/1361-665X/acdcd7/meta Multimodal Origami Shape Memory Metamaterials Undergoing Compression-twist Coupling] by a team from [http://en.hit.edu.cn/ Harbin Institute of Technology, China], [https://www.ntu.edu.sg/mae School of Mechanical and Aerospace Engineering, Nanyang Technological University], and [https://www.northumbria.ac.uk/ Northumbria University, UK]
* [https://link.springer.com/article/10.1007/s10845-023-02141-0 Process Parameter Optimization for Reproducible Fabrication of Layer Porosity Quality of 3D-Printed Tissue Scaffold] by a team from several departments at [https://www.vt.edu/ Virginia Tech]
* [https://pubs.acs.org/doi/abs/10.1021/acsami.3c01307 Fundamentals of Crystalline Evolution and Properties of Carbon Nanotube-Reinforced Polyether Ether Ketone Nanocomposites in Fused Filament Fabrication] by a team from several departments at [https://www.tamu.edu Texas A&M University]
* [https://www.osti.gov/servlets/purl/1960414 Printed Planar Microwave Connector with Multiple Signal Lines] by a team from [https://www.uml.edu/engineering/electrical-computer/ Electrical & Computer Engineering, University of Massachusetts, Lowell]
* [https://www.researchgate.net/profile/Aljawharah-Alsharif/publication/364062631_Structured_3D_Printed_Dry_ECG_Electrodes_Using_Copper_Based_Filament/links/640f739166f8522c38a04270/Structured-3D-Printed-Dry-ECG-Electrodes-Using-Copper-Based-Filament.pdf Structured 3D Printed Dry ECG Electrodes Using Copper Based Filament] by a team from the [https://cemse.kaust.edu.sa/org/cemse Computer Electrical Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST)]
* [https://onlinelibrary.wiley.com/doi/full/10.1002/admt.202201677 3D Printed Dry Electrodes for Electrophysiological Signal Monitoring: A Review] by a team from [https://www.kaust.edu.sa/en King Abdullah University of Science and Technology (KAUST)]


==== Published in 2022 ====
== FDM/HFF, 2022 ==


* [https://www.tandfonline.com/doi/abs/10.1080/2374068X.2023.2226919 A Comparison Between Large-format 3d Printing and Conventional Fused Filament Fabrication] by a team from [https://issuu.com/uaomercadeo/docs/international_brochure Universidad Autónoma de Occidente, Columbia]
* [https://arxiv.org/pdf/2210.17274.pdf Imbalanced Data Classification via Generative Adversarial Network with Application to Anomaly Detection in Additive Manufacturing Process] by a team from the [https://www.ise.vt.edu/ Grado Department of Industrial and Systems Engineering, Virginia Tech] and the [https://mie.njit.edu/ Department of Mechanical and Industrial Engineering, New Jersey Institute of Technology]
* [https://arxiv.org/ftp/arxiv/papers/2210/2210.17272.pdf Reinforcement Learning-based Defect Mitigation for Quality Assurance of Additive Manufacturing] by a team from the [https://www.ise.vt.edu/ Grado Department of Industrial and Systems Engineering, Virginia Tech] and the [https://mie.njit.edu/ Department of Mechanical and Industrial Engineering, New Jersey Institute of Technology]
* [https://books.google.com/books?hl=en&lr=lang_en&id=5XeGEAAAQBAJ&oi=fnd&pg=PA225&dq=hyrel&ots=z5RCHfPoi-&sig=QZbo_KqifYORnJ4Ujgr6rZ3GSc4#v=onepage&q&f=false Fabrication of Polycarbonate Filaments Infused with Carbon from Coconut Shell Powder for 3D Printing Applications] by a team from [https://www.tuskegee.edu/programs-courses/colleges-schools/coe/materials-science-and-engineering-home Tuskegee University's Department of Materials Science and Engineering (MSE)]
* [https://books.google.com/books?hl=en&lr=lang_en&id=5XeGEAAAQBAJ&oi=fnd&pg=PA225&dq=hyrel&ots=z5RCHfPoi-&sig=QZbo_KqifYORnJ4Ujgr6rZ3GSc4#v=onepage&q&f=false Fabrication of Polycarbonate Filaments Infused with Carbon from Coconut Shell Powder for 3D Printing Applications] by a team from [https://www.tuskegee.edu/programs-courses/colleges-schools/coe/materials-science-and-engineering-home Tuskegee University's Department of Materials Science and Engineering (MSE)]
* [https://vtechworks.lib.vt.edu/bitstream/handle/10919/111434/Law_A_D_2022.pdf?sequence=1 Smart Quality Assurance System for Additive Manufacturing using Data-driven based Parameter-Signature-Quality Framework], a dissertation submitted to [https://vt.edu/academics/majors/industrial-and-systems-engineering.html Virginia Tech's Industrial and Systems Engineering department]
* [https://vtechworks.lib.vt.edu/bitstream/handle/10919/111434/Law_A_D_2022.pdf?sequence=1 Smart Quality Assurance System for Additive Manufacturing using Data-driven based Parameter-Signature-Quality Framework], a dissertation submitted to [https://vt.edu/academics/majors/industrial-and-systems-engineering.html Virginia Tech's Industrial and Systems Engineering department]
Line 443: Line 564:
* [http://www.ijmerr.com/uploadfile/2022/0105/20220105041437730.pdf Surface Design of 3D-printed PEEK by Controlling Slicing Parameters] in the [http://www.ijmerr.com/ International Journal of Mechanical Engineering and Robotics Research]
* [http://www.ijmerr.com/uploadfile/2022/0105/20220105041437730.pdf Surface Design of 3D-printed PEEK by Controlling Slicing Parameters] in the [http://www.ijmerr.com/ International Journal of Mechanical Engineering and Robotics Research]


==== Published in 2021 ====
== FDM/HFF, 2021 ==


* [https://www.sciencedirect.com/science/article/pii/S2666682021001134 Effective Reinforcement of Engineered Sustainable Biochar Carbon for 3D Printed Polypropylene Biocomposites] from a team from [https://www.tuskegee.edu/ Tuskegee University]
* [https://www.sciencedirect.com/science/article/pii/S2666682021001134 Effective Reinforcement of Engineered Sustainable Biochar Carbon for 3D Printed Polypropylene Biocomposites] from a team from [https://www.tuskegee.edu/ Tuskegee University]
Line 453: Line 574:
* [https://onlinelibrary.wiley.com/doi/abs/10.1002/smll.202005743 3D Printing of Supramolecular Polymer Hydrogels with Hierarchical Structure] by a team from Northwestern University's [https://www.tgs.northwestern.edu/admission/academic-programs/explore-programs/materials-science-and-engineering.html Department of Materials Science and Engineering] and [https://sqi.northwestern.edu/ Simpson Querrey Institute] and the Soft Materials Branch of the [https://www.afrl.af.mil/RX/ Materials and Manufacturing Directorate, Air Force Research Laboratory]
* [https://onlinelibrary.wiley.com/doi/abs/10.1002/smll.202005743 3D Printing of Supramolecular Polymer Hydrogels with Hierarchical Structure] by a team from Northwestern University's [https://www.tgs.northwestern.edu/admission/academic-programs/explore-programs/materials-science-and-engineering.html Department of Materials Science and Engineering] and [https://sqi.northwestern.edu/ Simpson Querrey Institute] and the Soft Materials Branch of the [https://www.afrl.af.mil/RX/ Materials and Manufacturing Directorate, Air Force Research Laboratory]


==== Published in 2020 ====
== FDM/HFF, 2020 ==


* [https://smartech.gatech.edu/bitstream/handle/1853/64192/LU-DISSERTATION-2020.pdf Physics Based Compressive Sensing for Additive Manufacturing Process Monitoring] a PhD dissertation presented to the [https://www.me.gatech.edu/ Mechanical Engineering School at Georgia Tech].
* [https://smartech.gatech.edu/bitstream/handle/1853/64192/LU-DISSERTATION-2020.pdf Physics Based Compressive Sensing for Additive Manufacturing Process Monitoring] a PhD dissertation presented to the [https://www.me.gatech.edu/ Mechanical Engineering School at Georgia Tech].
Line 472: Line 593:
* [https://search.informit.com.au/documentSummary;dn=904356964367662;res=IELENG 3D Printing of Recycled PET Polymer Composite Infused with Sustainable Carbon] by a team from the [https://www.tuskegee.edu/programs-courses/colleges-schools/coe/materials-science-and-engineering-home Materials Science & Engineering Department of Tuskegee University]
* [https://search.informit.com.au/documentSummary;dn=904356964367662;res=IELENG 3D Printing of Recycled PET Polymer Composite Infused with Sustainable Carbon] by a team from the [https://www.tuskegee.edu/programs-courses/colleges-schools/coe/materials-science-and-engineering-home Materials Science & Engineering Department of Tuskegee University]


==== Published in 2019 ====
== FDM/HFF, 2019 ==


* [https://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1432&context=mechengfacpub Bioresorbable Composite Stents for Enhanced Response of Vascular Smooth Muscle Cells] by H. Mozafari from [https://engineering.unl.edu/mme/ The Department of Mechanical & Materials Engineering at the University of Nebraska - Lincoln]
* [https://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1432&context=mechengfacpub Bioresorbable Composite Stents for Enhanced Response of Vascular Smooth Muscle Cells] by H. Mozafari from [https://engineering.unl.edu/mme/ The Department of Mechanical & Materials Engineering at the University of Nebraska - Lincoln]
Line 493: Line 614:
* [https://www.sciencedirect.com/science/article/pii/S0032386119301107 Fast Scanning Calorimetry for Semicrystalline Polymers in Fused Deposition Modeling] by a team from [http://www.mse.gatech.edu/ The Materials Science and Engineering School of Georgia Tech]
* [https://www.sciencedirect.com/science/article/pii/S0032386119301107 Fast Scanning Calorimetry for Semicrystalline Polymers in Fused Deposition Modeling] by a team from [http://www.mse.gatech.edu/ The Materials Science and Engineering School of Georgia Tech]


==== Published in 2018 ====
== FDM/HFF, 2018 ==


* [https://search.proquest.com/openview/eea6c862dd126abc5b01f7164e8f2761/1?pq-origsite=gscholar&cbl=18750&diss=y Synthesis and Characterization of Novel Bioplastics by innovative 3D Printing Approaches], a Masters Thesis by Kathryn Hall from the [http://und.edu University of North Dakota]
* [https://search.proquest.com/openview/eea6c862dd126abc5b01f7164e8f2761/1?pq-origsite=gscholar&cbl=18750&diss=y Synthesis and Characterization of Novel Bioplastics by innovative 3D Printing Approaches], a Masters Thesis by Kathryn Hall from the [http://und.edu University of North Dakota]
Line 506: Line 627:
* [https://www.sciencedirect.com/science/article/pii/S0266353817318365 Fabrication and Properties of Novel Polymer-Metal Composites using Fused Deposition Modeling] by the [https://www.wpi.edu/academics/departments/mechanical-engineering Mechanical Engineering Staff] at [https://www.wpi.edu/ Worcester Polytechnic Institute]
* [https://www.sciencedirect.com/science/article/pii/S0266353817318365 Fabrication and Properties of Novel Polymer-Metal Composites using Fused Deposition Modeling] by the [https://www.wpi.edu/academics/departments/mechanical-engineering Mechanical Engineering Staff] at [https://www.wpi.edu/ Worcester Polytechnic Institute]


==== Published in 2017 ====
== FDM/HFF, 2017 ==


*[http://hyrel3d.net/papers/3D_Printing_of_the_Flight_Model.pdf NANOSATC-BR2, 2 unit CUBESAT, Power Analysis, Solar Flux Prediction, Design and 3D Printing of the Flight Model from the UFSM & INPE’S NANOSATC-BR, CUBESAT Development Program] by a team from the [http://site.ufsm.br Federal University of Santa Maria (UFSM), Brasil].
*[http://hyrel3d.net/papers/3D_Printing_of_the_Flight_Model.pdf NANOSATC-BR2, 2 unit CUBESAT, Power Analysis, Solar Flux Prediction, Design and 3D Printing of the Flight Model from the UFSM & INPE’S NANOSATC-BR, CUBESAT Development Program] by a team from the [http://site.ufsm.br Federal University of Santa Maria (UFSM), Brasil].
Line 516: Line 637:
*[https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5331332/ Dynamical Majorana edge modes in a broad class of topological mechanical systems] by [http://www.njit.edu The New Jersey Institute of Technology]
*[https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5331332/ Dynamical Majorana edge modes in a broad class of topological mechanical systems] by [http://www.njit.edu The New Jersey Institute of Technology]


==== Published in 2016 ====
== FDM/HFF, 2016 ==


* [https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20170000214.pdf High Temperature Thermoplastic Additive Manufacturing Using Low-Cost, Open-Source Hardware] published by [https://www.nasa.gov NASA]
* [https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20170000214.pdf High Temperature Thermoplastic Additive Manufacturing Using Low-Cost, Open-Source Hardware] published by [https://www.nasa.gov NASA]

Revision as of 12:52, 21 December 2023

Below is a list of published works citing Hyrel equipment.

Count

486 documents as of 8 December, 2023.

Non-Traditional Manufacturing (NTM)

Including:

  • Antennas
  • Sensors
  • Inductors
  • Circuits
  • Electro-Spinning
  • Electro-Melt-Spinning
  • Melt Electro-Writing (MEW)
  • 4D Printing
  • Shape Memory Polymers
  • Nanostructures
  • Micro-Encapsulated Phase-Changing Materials (MEPCM)
  • Printing with Embedded Fibers
  • And combining two or more additive manufacturing methods in a single build.

NTM, 2023

NTM, 2022

NTM, 2021

NTM, 2020

NTM, 2019

NTM, 2018

NTM, 2017

NTM, 2016

NTM, 2015

Unheated or Chilled Reservoir Printing (DIW, SEP, SSE, 3DCP, DCC)

Also known as Robocasting or DIW (Direct Ink Writing), SEP (Semisolid Extrusion Printing), SSE (Semisolid Extrusion). 3DCP' (3D Concrete Printing), or DCC (Digital Concrete Construction).

DIW/SEP/SSE, 2023

DIW/SEP/SSE, 2022

DIW/SEP/SSE, 2021

DIW/SEP/SSE, 2020

DIW/SEP/SSE, 2019

DIW/SEP/SSE, 2018

DIW/SEP/SSE, 2017

DIW/SEP/SSE, 2016

DIW/SEP/SSE, 2015

DIW/SEP/SSE, 2014

Heated Reservoir Printing (DPE, HME)

Also known as DPE (Direct Powder Extrusion) or HME (Hot Melt Extrusion).

DPE, HME 2023

DPE, HME 2022

DPE, HME 2021

DPE, HME 2020

DPE, HME 2019

DPE, HME 2018

DPE, HME 2017

Filament Printing (FFF, FDM)

Also known as FFF (Fused Filament Fabrication) or FDM (Fused Deposition Modeling).

FDM/HFF, 2023

FDM/HFF, 2022

FDM/HFF, 2021

FDM/HFF, 2020

FDM/HFF, 2019

FDM/HFF, 2018

FDM/HFF, 2017

FDM/HFF, 2016