Difference between revisions of "Published Papers"

From Hyrel3D
Jump to navigation Jump to search
 
(6 intermediate revisions by the same user not shown)
Line 7: Line 7:
== Count ==
== Count ==


486 documents as of 8 December, 2023.
567 documents as of 25 September, 2024.


== '''Non-Traditional Manufacturing (NTM)''' ==
== '''Non-Traditional Manufacturing (NTM)''' ==
Line 25: Line 25:
* Printing with Embedded Fibers
* Printing with Embedded Fibers
* And combining two or more additive manufacturing methods in a single build.
* And combining two or more additive manufacturing methods in a single build.
== NTM, 2024 ==
* [https://commons.erau.edu/cgi/viewcontent.cgi?article=1863&context=edt Additively Manufactured Flexible Piezoelectric Wave-Based Multifunctional SensorMultifunctional Sensor], a Master's Thesis submitted to [https://erau.edu/ Embry-Riddle Aeronautical University]
* [https://www.mdpi.com/2673-3978/5/3/11 Inkjet Printing of a Gate Insulator: Towards Fully Printable Organic Field Effect Transistor] by a team from the [https://polytechnic.purdue.edu/schools/engineering-technology School of Engineering Technology, Purdue University]
* [https://onlinelibrary.wiley.com/doi/full/10.1002/adfm.202409093 Extremely Stable, Multidirectional, All-in-One Piezoelectric Bending Sensor with Cycle up to Million Level] by a team from several departments of [http://en.xjtu.edu.cn/ Xi'an Jiaotong University, China]
* [https://onlinelibrary.wiley.com/doi/pdf/10.1002/adfm.202406341 Hybrid 3D Printing of a Nature-Inspired Flexible Self-Adhesive Biopatch for Multi-Biosignal Sensing] by a team from [https://www.kaust.edu.sa King Abdullah University of Science and Technology (KAUST)]'s [https://cemse.kaust.edu.sa/sama Smart Advanced Memory devices and Applications (SAMA) Lab], [https://energizingcomposites.kaust.edu.sa/cohmas Mechanics of Composites for Energy and Mobility Lab], and [https://bese.kaust.edu.sa/ Biological and Environmental Science and Engineering Division]
* [https://trace.tennessee.edu/cgi/viewcontent.cgi?article=10200&context=utk_graddiss Engineering of Functional Hybrid Nanocomposites for Renewable Energy Applications via Laser Ablation], a doctoral dissertation submitted to [https://cbe.utk.edu/ The University of Tennessee, Knoxville's Department of Chemical and Biomolecular Engineering ]
* [https://www.science.org/doi/pdf/10.1126/sciadv.adn7772 Multiscale 3d Printing via Active Nozzle Size and Shape Control] by a team from the [https://engineering.jhu.edu/case/ Department of civil and Systems engineering, Johns hopkins University]
* [https://onlinelibrary.wiley.com/doi/pdf/10.1002/smll.202402432 Versatile Patterning of Liquid Metal via Multiphase 3D Printing] by a team from the [https://msn.engineering.asu.edu/ School of Manufacturing Systems and Networks (MSN), Ira Fulton Schools of Engineering, Arizona State University]
* [https://www.nature.com/articles/s41467-024-48353-7 Advancing Interactive Systems With Liquid Crystal Network-based Adaptive Electronics] by a team from [https://www.tue.nl/en/ Eindhoven University of Technology, The Netherlands]
* [https://www.spiedigitallibrary.org/conference-proceedings-of-spie/12951/1295123/All-printed-multifunctional-sensors-for-structural-health-monitoring-of-inflatable/10.1117/12.3009977.short#_=_ All-printed Multifunctional Sensors for Structural Health Monitoring of Inflatable Habitats] by a team from [https://www.boisestate.edu/ Boise State University]
* [https://www.spiedigitallibrary.org/conference-proceedings-of-spie/12946/129461O/In-space-manufacturing-of-morphing-electronics/10.1117/12.3009988.short#_=_ In-space Manufacturing of Morphing Electronics ] by a team from [https://www.boisestate.edu/ Boise State University]
* [https://iopscience.iop.org/article/10.1149/1945-7111/ad3f53/pdf ARJUNA: An Electrochemical Interface Mapping Probe for Solid-State Batteries] by a team from [https://www.ornl.gov/eeid Electrification & Energy Infrastructure Division, Oak Ridge National Laboratory]
* [https://www.sciencedirect.com/science/article/abs/pii/S0956566324003075 Recent Advances in Implantable Sensors and Electronics Using Printable Materials for Advanced Healthcare] by a team from [http://uga.edu Georgia Tech], [https://plus.cnu.ac.kr/html/en/ Chungnam National University], [https://www.tacoma.uw.edu/ University of Washington Tacoma], and [https://med.emory.edu/ Emory University School of Medicine]
* [https://www.pharmaexcipients.com/wp-content/uploads/2024/04/Pediatric-Formulations-Developed-by-Extrusion-Based-3D-Printing.pdf Pediatric Formulations Developed by Extrusion-Based 3D Printing: From Past Discoveries to Future Prospects], results compiled by a team from [https://www.cnrs.fr/en Centre National de la Recherche Scientifique et Technologique (CRNF)] and [https://www.delpharm.com/en/ Delpharm, France]
* [https://chemrxiv.org/engage/chemrxiv/article-details/661d52d591aefa6ce19d3886 3D Printing Carbon-Carbon Composites With Multilayered Architecture for Enhanced Multifunctional Properties] by a team from [https://www.asu.edu/ Arizona State University], [https://www.cnrs.fr/en Centre National de la Recherche Scientifique et Technologique (CRNF)], [https://www.tamu.edu Texas A&M University], and [https://www.uga.edu/ University of Georgia]
* [https://pubs.acs.org/doi/full/10.1021/acsomega.4c01171 Direct Ink Writing of Strained Carbon Nanotube-Based Sensors: Toward 4D Printable Soft Robotics] by a team from [https://cemse.kaust.edu.sa/ SAMA Laboratories, Electrical and Computer Engineering, Computer Electrical Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST)] and [https://ee.kfupm.edu.sa/ Electrical Engineering, King Fahd University of Petroleum and Minerals (KFUPM)]
* [https://www.spiedigitallibrary.org/conference-proceedings-of-spie/12907/1290704/Liquid-crystal-elastomer-soft-robotic-arm-for-pick-and-place/10.1117/12.3000162.short#_=_ Liquid Crystal Elastomer Soft Robotic Arm for Pick-and-place Operation Controlled by Light] by a team from [https://www.tue.nl/en/ Technische Universiteit Eindhoven]
* [https://utw10945.utweb.utexas.edu/sites/default/files/2023/079%20DevelopmentofMultimaterialAdditiveManufacturingSystemsforEmbeddedElectronic.pdf Development of Multimaterial Additive Manufacturing Systems for Embedded Electronics] by a team from the [https://www.me.psu.edu/ Department of Mechanical Engineering, Pennsylvania State University] and the [https://www.me.uh.edu/ Department of Mechanical Engineering, University of Houston]
* [https://onlinelibrary.wiley.com/doi/10.1002/adfm.202201766 Direct Ink Writing of 4D Structural Colors] by a team from [https://www.tue.nl/en/research/research-groups/stimuli-responsive-functional-materials-devices/ Laboratory of Stimuli-Responsive Functional Materials and Devices (SFD), Department of Chemical Engineering and Chemistry] and [https://www.tue.nl/en/research/institutes/institute-for-complex-molecular-systems/ Institute for Complex Molecular Systems (ICMS)] of the [https://www.tue.nl/en Eindhoven University of Technology (TU/e)]
* [https://onlinelibrary.wiley.com/doi/pdf/10.1002/adfm.202313567 A Flexible and Electrically Conductive Liquid Metal Adhesive for Hybrid Electronic Integration] by a team from [https://www.vt.edu/ Virginia Tech]
* [https://onlinelibrary.wiley.com/doi/pdf/10.1002/adem.202301711 Low-Roughness 3D Printed Surfaces by Ironing for the Integration with Printed Electronics] by a team from the [https://lassonde.yorku.ca/eecs/ Department of Electrical Engineering and Computer Science, Lassonde School of Engineering, York University, Toronto]


== NTM, 2023 ==
== NTM, 2023 ==


* [https://link.springer.com/article/10.1007/s11665-023-08979-y Surface Oxide Removal in Preparation for Controlled Liquid Metal Embrittlement] by a team from the US Army Engineer Research and Development Center (EDRC)'s [https://www.erdc.usace.army.mil/Locations/CERL/ Construction Engineering Research Laboratory] and [https://www.erdc.usace.army.mil/Locations/GSL/ Geotechnical & Structures Laboratory]
* [https://www.sciencedirect.com/science/article/pii/S0014305723005268 Vitrimer Chemistry for 4D Printing Formulation] by a team from [https://sut.ac.ir/en/ Sahand University of Technology, Iran], [https://www.ntu.ac.uk/ Nottingham Trent University, UK], and [https://www.deakin.edu.au/ Deakin University, Geelong, Australia]
* [https://www.sciencedirect.com/science/article/pii/S0014305723005268 Vitrimer Chemistry for 4D Printing Formulation] by a team from [https://sut.ac.ir/en/ Sahand University of Technology, Iran], [https://www.ntu.ac.uk/ Nottingham Trent University, UK], and [https://www.deakin.edu.au/ Deakin University, Geelong, Australia]
* [https://onlinelibrary.wiley.com/doi/pdf/10.1002/admt.202300188 Laser-Induced Graphene Electrodes for OrganicElectrochemical Transistors (OECTs)] by a team from [https://lassonde.yorku.ca/eecs/ Department of Electrical Engineering and Computer Science, Lassonde School of Engineering, York University, Toronto]
* [https://onlinelibrary.wiley.com/doi/pdf/10.1002/admt.202300188 Laser-Induced Graphene Electrodes for OrganicElectrochemical Transistors (OECTs)] by a team from [https://lassonde.yorku.ca/eecs/ Department of Electrical Engineering and Computer Science, Lassonde School of Engineering, York University, Toronto]
Line 136: Line 160:


Also known as '''Robocasting''' or '''DIW''' (Direct Ink Writing), '''SEP''' (Semisolid Extrusion Printing), '''SSE''' (Semisolid Extrusion). '''3DCP'''' (3D Concrete Printing), or '''DCC''' (Digital Concrete Construction).
Also known as '''Robocasting''' or '''DIW''' (Direct Ink Writing), '''SEP''' (Semisolid Extrusion Printing), '''SSE''' (Semisolid Extrusion). '''3DCP'''' (3D Concrete Printing), or '''DCC''' (Digital Concrete Construction).
== DIW/SEP/SSE, 2024 ==
* [https://ceramics.onlinelibrary.wiley.com/doi/pdf/10.1111/ijac.14915 Slurry Material Extrusion of Chopped Carbon Fiber Reinforced Silicon Carbide Ceramic Matrix Composites (CMCS)] by a team from the [https://engineering.purdue.edu/MSE School of Materials Engineering, Purdue University]
* [https://pubs.rsc.org/en/content/articlepdf/2024/ma/d4ma00457d 3D Printed Porous Silicone Polymer Composites Using Table Salt as a Sacrificial Template] by a team from [https://lanl.gov/ Los Alamos National Laboratory]'s departments of [https://organizations.lanl.gov/cels/chemistry/chemical-diagnostics-engineering/ Chemical Diagnostics and Engineering], [https://organizations.lanl.gov/physical-sciences/sigma/fabrication-manufacturing-sciences/ Fabrication Manufacturing Sciences], and [https://organizations.lanl.gov/weapons-engineering/weapon-systems-engineering/ Weapon Systems Engineering (W Division)]
* [https://books.google.com/books?hl=en&lr=lang_en&id=-j8eEQAAQBAJ&oi=fnd&pg=PA225&dq=hyrel&ots=V0is0lX9Ty&sig=a3k7JR3yxdw9cBQtQg4_nQVnBrM#v=onepage&q=hyrel&f=false Use of a Lignin-Based Admixture for Tailoring the Rheological Properties of Mortars for 3D Printing] by a team from various departments of the [https://www.nrel.gov/ National Renewable Energy Laboratory]
* [https://www.sciencedirect.com/science/article/abs/pii/S0378517324008615 Development of Mucoadhesive 3D-printed Carbopol/eudragit/snac Tablets for the Oral Delivery of Enoxaparin: in Vitro and Ex Vivo Evaluation] by a team from [https://www.auth.gr/en/school/pharm-en/ School of Pharmacy, Aristotle University of Thessaloniki], [https://kedek.auth.gr/en/homepage-eng/ Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Thessaloniki], [https://uoi.gr/en/departments/department-of-biological-applications-and-technology/ Department of Biological Applications and Technologies, University of Ioannina], [https://www.unic.ac.cy/school-of-life-and-health-sciences/ School of Life and Health Sciences, University of Nicosia], [https://www.ihu.gr/en/enhome International Hellenic University], and [https://www.chemistry.uoc.gr/wordpress/en/home-2/ Department of Chemistry, University of Crete]
* [https://www.sciencedirect.com/science/article/abs/pii/S0272884224037519 Printing Resolution Effect on Mechanical Properties of Porous Boehmite Direct Ink 3D Printed Structures] by a team from [http://www.metal.iitkgp.ac.in/ Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur] and [https://reports.shell.com/investors-handbook/2016/projects-technology/in-focus-shell-technology-centre-bangalore.html Shell Technology Centre Bangalore]
* [https://jppres.com/jppres/pdf/vol13/jppres24.2016_13.1.115.pdf Semi-solid Extrusion 3d Printing of Plant-origin Rosmarinic Acid Loaded in Aqueous Polyethylene Oxide Gels] by a team from [https://ut.ee/en/institute-pharmacy Institute of Pharmacy, University of Tartu], [https://en.nuph.edu.ua/ National University of Pharmacy, Kharkiv], [https://kymu.edu.ua/en/ Kyiv International University], and [https://curifylabs.com/ CurifyLabs Oy, Helsinki]
* [https://arxiv.org/pdf/2408.04800 A High-Temperature Thermocouple Development by Additive Manufacturing: Tungsten-Nickel (W-Ni) and Molybdenum (Mo) Integration with Ceramic Structures] by a team from [https://ysu.edu/center-for-innovation-in-additive-manufacturing Advanced Manufacturing Research Center, Youngstown State University]
* [https://www.sciencedirect.com/science/article/abs/pii/S001021802400302X#preview-section-snippets The Influence of Heat Feedback and Thermal Conductivity on the Burn Rate of Thermite Composites] by a team from [https://www.ucr.edu/ University of California, Riverside]
* [https://www.proquest.com/openview/bcdee9005967fc5aa3952c2ff0bcbe14/1?pq-origsite=gscholar&cbl=18750&diss=y Direct Ink Writing Of PVDF/PEG/CA Composite Based Water Treatment Membranes], a Master's thesis presented to [https://www.asu.edu/ Arizona State University]
* [https://www.sciencedirect.com/science/article/abs/pii/S0167577X2401317X On-demand Release of Fucoidan From 3d-printed Cardiac Scaffolds Based on Chitosan/silk Fibroin/polyaniline] by a team from [https://nbuam.marmara.edu.tr/en Center for Nanotechnology & Biomaterials Application and Research (NBUAM), Marmara University, Turkey] and [https://bio.ui.ac.ir/en Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran]
* [https://www.sciencedirect.com/science/article/abs/pii/S2405829724004963 Machine Learning–Enabled Direct Ink Writing of Conductive Polymer Composites for Enhanced Performance in Thermal Management and Current Protection] by a team from multiple departments at both [https://www.uga.edu University of Georgia] and [https://www.asu.edu Arizona State University]
* [https://asmedigitalcollection.asme.org/micronanomanufacturing/article/doi/10.1115/1.4065964/1201675/Harnessing-Fly-Ash-as-Particle-Reinforcement-in Harnessing Fly Ash as Particle Reinforcement in Nature-Inspired Multilayer Composites] by a team from [https://www.deakin.edu.au/ifm Institute for Frontier Materials, Deakin University], [https://diat.ac.in/ Additive Manufacturing Laboratory, Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology, India], and [https://www.cipet.gov.in/centres/cipet-kochi/introduction.php CIPET-Institute of Petrochemicals Technology, India]
* [https://www.sciencedirect.com/science/article/abs/pii/S0141813024046713 Copper Nanoparticles Loaded Gelatin/ Polyvinyl Alcohol/ Guar Gum-based 3d Printable Multimaterial Hydrogel for Tissue Engineering Applications] by a team from the [https://mech.iittp.ac.in/ Department of Mechanical Engineering, Indian Institute of Technology, Tirupati] and the [https://svimstpt.ap.nic.in/Biotechnology.html Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati]
* [https://iopscience.iop.org/article/10.1149/2754-2726/ad23df Field Testing of a Mixed Potential IoT Sensor Platform for Methane Quantification] by a team from the [https://www.unm.edu University of New Mexico] and [https://www.sensorcommtech.com SensorComm Technologies, Inc.]
* [https://www.preprints.org/manuscript/202406.1591/download/final_file German Chamomile (Matricaria chamomilla L.) Flowers Extract, Its Amino Acids Preparations and 3D-Printed Dosage Forms: Phytochemical, Pharmacological, Technological and Molecular Docking Study] by a team from [https://ut.ee/en/institute-pharmacy Institute of Pharmacy, Faculty of Medicine, University of Tartu,], [https://en.nuph.edu.ua/ National University of Pharmacy, Kharkiv, Ukraine], [https://lsmu.lt/en/about-lsmu/structure/medical-academy/faculty-of-pharmacy/institute-of-pharmaceutical-technologies/ Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Kaunas], [https://lifechemicals.com/the-company/contacts/contacts-eu/ Life Chemicals Inc., Kyiv, Ukraine], and [https://int.mphu.edu.ua/ Zaporizhzhia State Medical and Pharmaceutical University, Zaporizhzhia, Ukraine]
* [https://pubs.rsc.org/en/content/articlehtml/2024/ma/d4ma00137k Direct Ink Writing of Porous Shape Memory Polyesters] by a team from [https://www.tamu.edu/ Texas A&M University]'s departments of [https://engineering.tamu.edu/materials/index.html Department of Materials Science and Engineering], [https://engineering.tamu.edu/biomedical/index.html Biomedical Engineering], and [Chemistry https://www.chem.tamu.edu/]
* [https://www.sciencedirect.com/science/article/abs/pii/S0926669024009543 Synthesis and Characterization of SiO2 Nanoparticles Reinforced 3D Printable Gelatin/pva/guar Gum/ Hydroxypropyl Methylcellulose-based Biocomposite Hydrogel] by a team from [https://mech.iittp.ac.in/ Department of Mechanical Engineering, Indian Institute of Technology, Tirupati]
* [https://onlinelibrary.wiley.com/doi/pdf/10.1002/adem.202401130 The Effects of Shear Stress on the Micromechanical Properties of 3D Printable Biopolymer Nanocomposites Using a Custom-Designed Extrusion-Based 3D Printer] by a team from [https://uwaterloo.ca/ University of Waterloo]'s departments of [https://uwaterloo.ca/systems-design-engineering/ Systems Design Engineering] and [https://uwaterloo.ca/mechanical-mechatronics-engineering/ Department of Mechanical and Mechatronics Engineering]
* [https://iopscience.iop.org/article/10.1088/1748-605X/ad565d/pdf Whey Protein-loaded 3d-printed Poly (Lactic) Acid Scaffolds for Wound Dressing Applications] by a team from [https://www.marmara.edu.tr/en Marmara University, Turkey] and [https://www.ucl.ac.uk/ University College, London]
* [https://pubs.acs.org/doi/abs/10.1021/acsaelm.4c00646 Development of Inks with Fillers of NbS3 Quasi-One-Dimensional Charge-Density-Wave Material] by a team from [https://www.ucla.edu/ University of California, Los Angeles], [https://www.uga.edu/ University of Georgia], and [https://www.auburn.edu/ Auburn University]
* [https://etda.libraries.psu.edu/files/final_submissions/29968 Dispersion and Stability Studies for Development of Ceramic Paste for Direct Ink Writing], a Master's thesis submitted to [https://www.matse.psu.edu/ Pennsylvania State University's Department of Materials Science and Engineering]
* [https://www.sciencedirect.com/science/article/abs/pii/S2214860424002434 Electrothermal Free-form Additive Manufacturing of Thermosets] by a team from [https://www.tamu.edu Texas A&M University]'s [https://engineering.tamu.edu/chemical Department of Chemical Engineering] and [https://engineering.tamu.edu/materials Department of Materials Science & Engineering], and from [https://www.a-star.edu.sg/simtech Singapore Institute of Manufacturing Technology (SIMTech), Agency for Science, Technology and Research (A⁎STAR)]
* [https://pubs.acs.org/doi/full/10.1021/acsaenm.4c00126 Ink-Based Additive Manufacturing of a Polymer/Coal Composite: A Non-Traditional Reinforcement] by a team from [https://www.asu.edu/ Arizona State University], [https://www.uga.edu/ University of Georgia], and [https://www.hesam.eu/ HESAM Universite, France]
* [https://www.sciencedirect.com/science/article/abs/pii/S0007850624000738 Upflow Mitigation Strategy for Nested Printing] by a team from the [https://www.ufl.edu/ University of Florida]'s Departments of [https://mae.ufl.edu/ Mechanical and Aerospace Engineering] and [https://www.ise.ufl.edu/ Industrial and Systems Engineering]
* [https://pubs.acs.org/doi/full/10.1021/acsami.4c02466 Enhancing Electrical Conductivity of Stretchable Liquid Metal–Silver Composites through Direct Ink Writing] by a team from the [https://bartlett.me.vt.edu/ Mechanical Engineering, Soft Materials and Structures Lab, Virginia Tech]
* [https://www.sciencedirect.com/science/article/abs/pii/S0141813024026461 Design and in Vitro Evaluation of Curcumin-loaded Plga Nanoparticle Embedded Sodium Alginate/gelatin 3D Printed Scaffolds for Alzheimer's Disease] by a team from [https://www.marmara.edu.tr/en Marmara University], [https://www.ucl.ac.uk/ University College London], [https://www.cubeincubation.com/en/our-initiatives Cube Incubation, Turkey], [Istanbul Kent University Istanbul Kent University], [https://www.cumhuriyet.edu.tr/ Cumhuriyet University], [University of Health Science and Pharmacy in St. Louis University of Health Science and Pharmacy in St. Louis], and [https://www.ua.pt/en/ University of Aveiro]
* [http://ysjskxygc.xml-journal.net/en/article/pdf/preview/10.13264/j.cnki.ysjskx.2024.01.010.pdf Rheological Properties of SiC Suspension for Direct Ink Writing] by a team from [https://en.csu.edu.cn/ Central South University, China]
* [https://pubs.acs.org/doi/abs/10.1021/acsabm.3c01088 Enhancing Extracellular Electron Transfer of a 3D-Printed Shewanella Bioanode with Riboflavin-Modified Carbon Black Bioink] by a team from [https://www.zju.edu.cn/english/ Zhejiang University, China]
* [https://www.nature.com/articles/s41467-024-47452-9 Vapor-induced Phase-separation-enabled Versatile Direct Ink Writing] by a team from [https://www.ufl.edu/ University of Florida], [https://sc.edu/ University of South Carolina], and [https://www.zju.edu.cn/english/ Zhejiang University, China]
* [https://www.sciencedirect.com/science/article/abs/pii/S0955221924003121 3D-Printed Photocatalytic Scaffolds of BiVO4 by Direct Ink Writing for Acetaminophen Mineralization] by a team from [https://cimav.edu.mx/investigacion/subsede-monterrey/ Centro de Investigación en Materiales Avanzados S.C. (CIMAV-Subsede Monterrey), Mexico], Nano & Micro Additive Manufacturing of Polymers and Composite Materials Laboratory ‘‘3D LAB’’. Advanced Functional Materials & Nanotechnology Group, and [https://www.uanl.mx/dependencias/facultad-de-ingenieria-mecanica-y-electrica/ Universidad Autónoma de Nuevo León, Facultad de Ingeniería Mecánica y Eléctrica, San Nicolás de los Garza, Nuevo León, Mexico]
* [https://doi.org/10.1002/adma.202401140 Fast and Slow-Twitch Actuation via Twisted Liquid Crystal Elastomer Fibers] presented at the [https://www.grc.org/ Gordon Research Conferences (GRC)]
* [https://www.sciencedirect.com/science/article/pii/S1751616124001310 The Effect of Triglycerol Diacrylate on the Printability and Properties of UV Curable, Bio-based Nanohydroxyapatite Composites] by a team from the [ University of Waterloo, Canada]'s [https://uwaterloo.ca/waterloo-composite-biomaterial-systems-lab/ Composite Biomaterial Systems Laboratory] and [https://uwaterloo.ca/bioengineering-biotechnology/ Material Interaction with Biological Systems Laboratory]
* [https://www.mdpi.com/2223-7747/13/6/754 Eucalypt Extracts Prepared by a No-Waste Method and Their 3D-Printed Dosage Forms Show Antimicrobial and Anti-Inflammatory Activity] by a team from [https://ut.ee/en/institute-pharmacy Institute of Pharmacy, Faculty of Medicine, University of Tartu, Estonia], [https://en.nuph.edu.ua/ Pharmacognosy Department, The National University of Pharmacy (Ukraine)], [https://www.imiamn.org.ua/indexEN.html I.Mechnikov Institute of Microbiology and Immunology, National Academy of Medical Sciences of Ukraine], [https://ut.ee/en/department-microbiology Department of Microbiology, Institute of Biomedicine and Translational Medicine, Faculty of Medicine, University of Tartu, Estonia], and [https://biomeditsiin.ut.ee/en/content/department-microbiology Laboratory of Clinical Microbiology, United Laboratories, Tartu University Hospital, Estonia]
* [https://www.nature.com/articles/s41467-024-46532-0 3D Printing by Stereolithography Using Thermal Initiators] by a team from the [https://chemistry.huji.ac.il/ Institute of Chemistry, Hebrew University of Jerusalem]
* [https://www.science.org/doi/full/10.1126/sciadv.adk3250 Three-dimensional Printing of Wood] by a team from [https://www.ornl.gov/ Oak Ridge National Laboratory]
* [https://pubs.acs.org/doi/full/10.1021/acsomega.4c00386 Additively Manufactured Silicone Polymer Composite with High Hydrogen Getter Content and Hydrogen Absorption Capacity] by a team from [https://lanl.gov Los Alamos National Laboratory]'s [https://organizations.lanl.gov/cels/chemistry/chemical-diagnostics-engineering/ Chemical Diagnostics and Engineering Group] and [https://organizations.lanl.gov/physical-sciences/sigma/fabrication-manufacturing-sciences/ Fabrication Manufacturing Science Group]
* [https://www.sciencedirect.com/science/article/abs/pii/S0260877424000980#preview-section-snippets Modulating the 3D Printability of Vitamin D3-nanoemulsion-based Dairy Gels: Influence of Emulsifier on Gel Structure, Printing Behaviour and Vitamin D3 Retention] by a team from the [https://crdt.iitd.ac.in/ Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi] and [https://agriculture-food-sustainability.uq.edu.au/ School of Agriculture and Food Sciences, The University of Queensland]
* [https://www.preprints.org/manuscript/202402.1033/v1 The Eucalypt Extracts Prepared by a Non-wasting Method and Their 3D-Printed Dosage Forms With an Antimicrobial and Anti-inflammatory Activity] by a team from the [https://ut.ee/en/institute-pharmacy Institute of Pharmacy, Faculty of Medicine, University of Tartu], the  [https://en.nuph.edu.ua/ Pharmacognosy department, The National University of Pharmacy, Ukraine], the [http://www.imiamn.org.ua/indexEN.html I. Mechnikov Institute of Microbiology and Immunology. National Academy of Medical Sciences of Ukraine], the [https://biomeditsiin.ut.ee/en/esileht-bio-ja-siirdemeditsiin-instituut Department of Microbiology, Institute of Biomedicine and Translational Medicine, Faculty of Medicine, University of Tartu], and the [https://biomeditsiin.ut.ee/en/content/department-microbiology Laboratory of Clinical Microbiology, United Laboratories, Tartu University Hospital]
* [https://onlinelibrary.wiley.com/doi/pdf/10.1002/aenm.202304287 High-Throughput Ammonia Production from Nitrate Using Liquid Metal Synthesized Bismuth Nano-Catalyst] by a team from the [https://www.crpp.cnrs.fr/en/home-page/ Centre de Recherche Paul Pascal−CNRS, University of Bordeaux], [https://www.sydney.edu.au/engineering/schools/school-of-chemical-and-biomolecular-engineering.html School of Chemical and Biomolecular Engineering, The University of Sydney], and the Schools of [https://www.unsw.edu.au/engineering/our-schools/chemical-engineering Chemical Engineering] and [https://www.unsw.edu.au/engineering/our-schools/biomedical-engineering Biomedical Engineering] of the [https://www.unsw.edu.au/ University of New South Wales (UNSW)]
* [https://onlinelibrary.wiley.com/doi/pdf/10.1002/app.55236 Boron-polymer Composites Engineered for Compression Molding, Foaming, and Additive Manufacturing] by a team from [https://www.lanl.gov/ Los Alamos National Laboratory]
* [https://scholarworks.utep.edu/cgi/viewcontent.cgi?article=4991&context=open_etd Design and Customization of 3D Printers for Advanced Materials Printing], a Master's Thesis submitted to the [https://www.utep.edu/ University of Texas at El Paso]
* [https://www.mdpi.com/2079-6374/14/1/56 Sensing Levofloxacin with an RNA Aptamer as a Bioreceptor] by a team from the [https://www.tu-darmstadt.de/index.en.jsp Technical University of Darmstadt]
* [https://www.sciencedirect.com/science/article/abs/pii/S0963996924001054 Influence of Starch-protein Interactions on the Digestibility and Chemical Properties of a 3D-printed Food Matrix Based on Salmon by-product Proteins] by a team from the [https://www.ubiobio.cl/ Universidad del Bío-Bío, Chile]
* [https://www.sciencedirect.com/science/article/abs/pii/S0014305723009199 Designing Advanced Hydrogel Inks With Direct Ink Writing Based 3d Printability for Engineered Biostructures] by a team from [https://www.iitmandi.ac.in/schoolpage.php?id=SCS School of Chemical Sciences, Indian Institute of Technology Mandi] and [https://homep.yu.ac.kr/en/academic/index.php?c=academic_01_c_10 School of Chemical Engineering, Yeungnam University]


== DIW/SEP/SSE, 2023 ==
== DIW/SEP/SSE, 2023 ==


* [https://www.sciencedirect.com/science/article/abs/pii/S2214860423005389 Designing Liquid Metal Microstructures Through Directed Material Extrusion Additive Manufacturing] by a team from [https://www.brown.edu/ Brown University], [https://www.vt.edu/ Virginia Tech], and [https://www.unl.edu/ University of Nebraska–Lincoln]
* [https://link.springer.com/article/10.1007/s40820-023-01286-0 Engineering Nano/Microscale Chiral Self-Assembly in 3D Printed Constructs] by a team from the University of South Carolina's [https://sc.edu/study/colleges_schools/engineering_and_computing/departments/chemical_engineering/index.php Department of Chemical Engineering] and [https://sc.edu/study/colleges_schools/engineering_and_computing/departments/biomedical_engineering/index.php  Biomedical Engineering Program] and from [https://www.tainstruments.com/ TA Instruments]
* [https://www.sciencedirect.com/science/article/abs/pii/S2214860423005481 Design and Fabrication of Flexible Woodpile Structured Nanocomposite for Microwave Absorption Using Material Extrusion Additive Technique] by a team from the [https://mechanical.iitism.ac.in/ Department of Mechanical Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad]
* [https://www.sciencedirect.com/science/article/pii/S2352940723002834 Towards a Predictive Understanding of Direct Ink Writing of Graphene-based Inks] by a team from several departments of [https://www.tue.nl/en/ Eindhoven University of Technology]
* [https://pubs.rsc.org/en/content/articlehtml/2024/lp/d3lp00200d Direct Ink Writing of Polyimide Aerogels for Battery Thermal Mitigation] by a team from [https://www.tamu.edu Texas A&M University] and the  [https://www.nasa.gov/glenn/ NASA Glenn Research Center]
* [https://www.sciencedirect.com/science/article/abs/pii/S2214860423005389 Designing Liquid Metal Microstructures Through Directed Material Extrusion Additive Manufacturing] by a team from several departments of [https://www.vt.edu/ Virginia Tech], [https://www.brown.edu/ Brown University], and [https://www.unl.edu/ University of Nebraska–Lincoln]
* [https://www.osti.gov/servlets/purl/2205716 Development of 3d Printing Techniques for Solid-state Lithium Batteries] by a team from [https://www.llnl.gov/ Lawrence Livermore National Laboratory]
* [https://www.taylorfrancis.com/chapters/edit/10.1201/9781003258353-5/processing-bioceramics-additive-manufacturing-david-orisekeh-jahan Processing of Bioceramics by Additive Manufacturing], affiliation unknown
* [https://www.taylorfrancis.com/chapters/edit/10.1201/9781003258353-5/processing-bioceramics-additive-manufacturing-david-orisekeh-jahan Processing of Bioceramics by Additive Manufacturing], affiliation unknown
* [https://link.springer.com/chapter/10.1007/978-3-031-46015-9_8 Semisolid Extrusion Printing and 3D Bioprinting] by a team from [https://pharmacy.utexas.edu/ College of Pharmacy, The University of Texas at Austin] and [https://pharmacy.olemiss.edu/ School of Pharmacy, University of Mississippi]
* [https://link.springer.com/chapter/10.1007/978-3-031-46015-9_8 Semisolid Extrusion Printing and 3D Bioprinting] by a team from [https://pharmacy.utexas.edu/ College of Pharmacy, The University of Texas at Austin] and [https://pharmacy.olemiss.edu/ School of Pharmacy, University of Mississippi]
Line 447: Line 525:


Also known as '''DPE''' (Direct Powder Extrusion) or '''HME''' (Hot Melt Extrusion).
Also known as '''DPE''' (Direct Powder Extrusion) or '''HME''' (Hot Melt Extrusion).
== [[Reservoir_Heads|DPE, HME 2024]] ==
* [https://pubs.acs.org/doi/full/10.1021/acsomega.4c05664 3D Printing of Thermally Responsive Shape Memory Liquid Crystalline Epoxy Networks] by a team from [https://tickle.utk.edu/mse/ Department of Materials Science and Engineering, The University of Tennessee, Knoxville], [http://en.mse.ustb.edu.cn/ School of Materials Science and Engineering, University of Science and Technology, Beijing], [https://neutrons.ornl.gov/sns Spallation Neutron Source, Oak Ridge National Laboratory], and [https://crc.tennessee.edu/ Center for Renewable Carbon, University of Tennessee, Knoxville]
* [https://pubs.acs.org/doi/full/10.1021/acsaenm.4c00158 Thermal Weathering of 3D-Printed Lunar Regolith Simulant Composites] by a team from [https://jseg.space Jacobs Space Exploration Group, NASA Marshall Space Flight Center] and from several departments of [https://www.gatech.edu/ Georgia Institute of Technology (GATECH)]
* [https://onlinelibrary.wiley.com/doi/abs/10.1002/app.55423 3D Printing of Cyanate Ester Resins With Interpenetration Networks for Enhanced Thermal and Mechanical Properties] by a team from the [https://www.utep.edu/ University of Texas at El Paso]
* [https://chemrxiv.org/engage/api-gateway/chemrxiv/assets/orp/resource/item/65f1e6239138d231616557e8/original/bio-inspired-3d-printing-of-layered-structures-utilizing-stabilized-amorphous-calcium-carbonate-within-biodegradable-matrices.pdf Bio-Inspired 3D Printing of Layered Structures Utilizing Stabilized Amorphous Calcium Carbonate within Biodegradable Matrices] by a team from the [https://int.technion.ac.il/programs/graduate-school/materials-science-and-engineering/ Department of Materials Science and Engineering] and the [https://rbni.technion.ac.il/ Russell Berrie Nanotechnology Institute] of [https://www.technion.ac.il/en/home-2/ Technion, the Israel Institute of Technology]
* [https://www.mdpi.com/1999-4923/16/4/437 3D Printing Direct Powder Extrusion in the Production of Drug Delivery Systems: State of the Art and Future Perspectives] by the [http://farmacia.us.es/portal/ Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universidad de Sevilla]
* [https://www.mdpi.com/1999-4923/16/4/441/pdf&hl=en&sa=X&d=3300068694145389111&ei=7r8AZrbdFtGcy9YPk4yogAU&scisig=AFWwaeYAnwMJiM_DsBJYoKmbfDwX&oi=scholaralrt&hist=QZPgiEkAAAAJ:18370435948786443487:AFWwaeaEM0xeEgrLLW3xIdc2G8Zs&html=&pos=1&folt=kw Pediatric Formulations Developed by Extrusion-Based 3D Printing: From Past Discoveries to Future Prospects] by a team from [https://utcbs.u-paris.fr/en/about-us/ CNRS, INSERM, Chemical and Biological Technologies for Health Group (UTCBS), Université Paris Cité] and [https://www.delpharm.com/ Delpharm Reims,]
* [https://chemrxiv.org/engage/api-gateway/chemrxiv/assets/orp/resource/item/65f1e6239138d231616557e8/original/bio-inspired-3d-printing-of-layered-structures-utilizing-stabilized-amorphous-calcium-carbonate-within-biodegradable-matrices.pdf Bio-inspired 3D-printing of Layered Amorphous Calcium Carbonate Composites] by a team from [https://www.technion.ac.il/en/home-2/ Technion - Israel Institute of Technology]


== [[Reservoir_Heads|DPE, HME 2023]] ==
== [[Reservoir_Heads|DPE, HME 2023]] ==
Line 534: Line 622:


Also known as '''FFF''' (Fused Filament Fabrication) or '''FDM''' (Fused Deposition Modeling).
Also known as '''FFF''' (Fused Filament Fabrication) or '''FDM''' (Fused Deposition Modeling).
== FDM/FFF, 2024 ==
* [https://link.springer.com/article/10.1557/s43577-024-00756-z Novel Production Strategy of Drug-encapsulated Biodegradable Scaffolds for Remediation of Hidradenitis Suppurativa] by a team from [https://www.gtu.edu.tr/en/kategori/2203/3/display.aspx Institute of Biotechnology, Gebze Technical University, Turkey], [https://bme.unc.edu/ Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill], and multiple departments of both [https://www.uml.edu/ University of Massachusetts, Lowell] and [https://www.marmara.edu.tr/en Marmara University, Turkey]
* [https://link.springer.com/article/10.1007/s42247-024-00711-3 3D-printed Polylactic Acid (Pla)/polymethyl Silsesquioxane (Pmsq)-based Scaffolds Coated With Vitamin E Microparticles for the Application of Wound Healing] by a team from [https://www.marmara.edu.tr/en Marmara University, Turkey], [https://uskudar.edu.tr/en Üsküdar University, Turkey], [https://www.tuseb.gov.tr/en Health Institutes of Türkiye (TUSEB), Turkey], [https://www.iuc.edu.tr/en/ Istanbul University-Cerrahpasa, Turkey], and [https://gelisim.edu.tr/en/gelisim-homepage Istanbul Gelisim University, Turkey]
* [https://iopscience.iop.org/article/10.1088/2631-8695/ad2e51/meta Programmable Cell Unit Arrangement of 3D Printing Mechanical Metamaterial Undergoing Tailorable Local Instability] by a team from [http://www.hrbust.edu.cn  Harbin University of Science and Technology]


== FDM/HFF, 2023 ==
== FDM/HFF, 2023 ==

Latest revision as of 09:59, 4 October 2024

Below is a list of published works citing Hyrel equipment.

Count

567 documents as of 25 September, 2024.

Non-Traditional Manufacturing (NTM)

Including:

  • Antennas
  • Sensors
  • Inductors
  • Circuits
  • Electro-Spinning
  • Electro-Melt-Spinning
  • Melt Electro-Writing (MEW)
  • 4D Printing
  • Shape Memory Polymers
  • Nanostructures
  • Micro-Encapsulated Phase-Changing Materials (MEPCM)
  • Printing with Embedded Fibers
  • And combining two or more additive manufacturing methods in a single build.

NTM, 2024

NTM, 2023

NTM, 2022

NTM, 2021

NTM, 2020

NTM, 2019

NTM, 2018

NTM, 2017

NTM, 2016

NTM, 2015

Unheated or Chilled Reservoir Printing (DIW, SEP, SSE, 3DCP, DCC)

Also known as Robocasting or DIW (Direct Ink Writing), SEP (Semisolid Extrusion Printing), SSE (Semisolid Extrusion). 3DCP' (3D Concrete Printing), or DCC (Digital Concrete Construction).

DIW/SEP/SSE, 2024

DIW/SEP/SSE, 2023

DIW/SEP/SSE, 2022

DIW/SEP/SSE, 2021

DIW/SEP/SSE, 2020

DIW/SEP/SSE, 2019

DIW/SEP/SSE, 2018

DIW/SEP/SSE, 2017

DIW/SEP/SSE, 2016

DIW/SEP/SSE, 2015

DIW/SEP/SSE, 2014

Heated Reservoir Printing (DPE, HME)

Also known as DPE (Direct Powder Extrusion) or HME (Hot Melt Extrusion).

DPE, HME 2024

DPE, HME 2023

DPE, HME 2022

DPE, HME 2021

DPE, HME 2020

DPE, HME 2019

DPE, HME 2018

DPE, HME 2017

Filament Printing (FFF, FDM)

Also known as FFF (Fused Filament Fabrication) or FDM (Fused Deposition Modeling).

FDM/FFF, 2024

FDM/HFF, 2023

FDM/HFF, 2022

FDM/HFF, 2021

FDM/HFF, 2020

FDM/HFF, 2019

FDM/HFF, 2018

FDM/HFF, 2017

FDM/HFF, 2016