Difference between revisions of "Published Papers"

From Hyrel3D
Jump to navigation Jump to search
Line 50: Line 50:
* [https://opencommons.uconn.edu/cgi/viewcontent.cgi?article=1601&context=srhonors_theses Effect of Silk-Based Hydrogel Topography on Intestinal Epithelial Cell Morphology and Wound Healing In Vitro] a thesis by Marisa E. Boch from the [https://cbe.engr.uconn.edu Department of Chemical and Biomolecular Engineering] at the [http://uconn.ecu University of Connecticut]
* [https://opencommons.uconn.edu/cgi/viewcontent.cgi?article=1601&context=srhonors_theses Effect of Silk-Based Hydrogel Topography on Intestinal Epithelial Cell Morphology and Wound Healing In Vitro] a thesis by Marisa E. Boch from the [https://cbe.engr.uconn.edu Department of Chemical and Biomolecular Engineering] at the [http://uconn.ecu University of Connecticut]


*[https://www.researchgate.net/profile/Homa_Maleki2/publication/325559793_Compressible_thermally_insulating_and_fire_retardant_aerogels_through_self-assembling_the_silk_fibroin_biopolymer_inside_the_silica_structure_-_An_approach_towards_3D_printing_of_aerogels/links/5b2ca6930f7e9b0df5ba7281/Compressible-thermally-insulating-and-fire-retardant-aerogels-through-self-assembling-the-silk-fibroin-biopolymer-inside-the-silica-structure-An-approach-towards-3D-printing-of-aerogels.pdf Compressible, Thermally Insulating, and Fire Retardant Aerogels through Self-Assembling Silk Fibroin Biopolymers Inside a Silica Structure - An Approach towards 3D Printing of Aerogels] by a team from the Chemistry and Physics of Materials department of [https://www.uni-salzburg.at/index.php?id=52&L=1 The University of Salzburg].
*[https://www.researchgate.net/profile/Homa_Maleki2/publication/325559793_Compressible_thermally_insulating_and_fire_retardant_aerogels_through_self-assembling_the_silk_fibroin_biopolymer_inside_the_silica_structure_-_An_approach_towards_3D_printing_of_aerogels/links/5b2ca6930f7e9b0df5ba7281/Compressible-thermally-insulating-and-fire-retardant-aerogels-through-self-assembling-the-silk-fibroin-biopolymer-inside-the-silica-structure-An-approach-towards-3D-printing-of-aerogels.pdf Compressible, Thermally Insulating, and Fire Retardant Aerogels through Self-Assembling Silk Fibroin Biopolymers Inside a Silica Structure - An Approach towards 3D Printing of Aerogels] by a team from the [https://www.uni-salzburg.at/index.php?id=210387&L=1 Chemistry and Physics of Materials Department] of [https://www.uni-salzburg.at/index.php?id=52&L=1 The University of Salzburg] and [https://www.chemie.uni-koeln.de/forschung_ac.html?&L=1 School of Inorganic Chemistry] at [http://www.portal.uni-koeln.de/9441.html?L=1 The University of Cologne].


* [https://www.nature.com/articles/s41467-018-04800-w.pdf Covalent-Supramolecular Hybrid Polymers as Muscle-Inspired Anisotropic Actuators] by an interdisciplinary team from [https://www.northwestern.edu Northwestern University]. ''The 3D printing experiments were supported by the '''[http://www.wpafb.af.mil/afrl.aspx Air Force Research Laboratory]''' under agreement number FA8650-15-2-5518''
* [https://www.nature.com/articles/s41467-018-04800-w.pdf Covalent-Supramolecular Hybrid Polymers as Muscle-Inspired Anisotropic Actuators] by an interdisciplinary team from [https://www.northwestern.edu Northwestern University]. ''The 3D printing experiments were supported by the '''[http://www.wpafb.af.mil/afrl.aspx Air Force Research Laboratory]''' under agreement number FA8650-15-2-5518''

Revision as of 18:47, 28 May 2019

Below is a list of published works citing Hyrel equipment. 1010 documents as of 28 May 2019.

Published Papers Citing Hybrid Manufacturing

Published in 2019

Published in 2018

Published Papers Citing Hyrel Cold Flow

Published in 2019

Published in 2018

Published in 2017

Published in 2016

Published in 2015

Published in 2014

Published Video Citing Hyrel Cold Flow

Published in 2017

Published Papers Citing Hyrel Warm Flow

Published in 2019

Published in 2018

Published in 2017

Published Papers Citing Hyrel Hot Flow

Published in 2019

Published in 2018

Published in 2017

Published in 2016

Published in 2015