Difference between revisions of "Published Papers"

From Hyrel3D
Jump to navigation Jump to search
Line 160: Line 160:


Also known as '''Robocasting''' or '''DIW''' (Direct Ink Writing), '''SEP''' (Semisolid Extrusion Printing), '''SSE''' (Semisolid Extrusion). '''3DCP'''' (3D Concrete Printing), or '''DCC''' (Digital Concrete Construction).
Also known as '''Robocasting''' or '''DIW''' (Direct Ink Writing), '''SEP''' (Semisolid Extrusion Printing), '''SSE''' (Semisolid Extrusion). '''3DCP'''' (3D Concrete Printing), or '''DCC''' (Digital Concrete Construction).
== DIW/SEP/SSE, 2024 ==
* [https://ceramics.onlinelibrary.wiley.com/doi/pdf/10.1111/ijac.14915 Slurry Material Extrusion of Chopped Carbon Fiber Reinforced Silicon Carbide Ceramic Matrix Composites (CMCS)] by a team from the [https://engineering.purdue.edu/MSE School of Materials Engineering, Purdue University]
* [https://pubs.rsc.org/en/content/articlepdf/2024/ma/d4ma00457d 3D Printed Porous Silicone Polymer Composites Using Table Salt as a Sacrificial Template] by a team from [https://lanl.gov/ Los Alamos National Laboratory]'s departments of [https://organizations.lanl.gov/cels/chemistry/chemical-diagnostics-engineering/ Chemical Diagnostics and Engineering], [https://organizations.lanl.gov/physical-sciences/sigma/fabrication-manufacturing-sciences/ Fabrication Manufacturing Sciences], and [https://organizations.lanl.gov/weapons-engineering/weapon-systems-engineering/ Weapon Systems Engineering (W Division)]
* [https://books.google.com/books?hl=en&lr=lang_en&id=-j8eEQAAQBAJ&oi=fnd&pg=PA225&dq=hyrel&ots=V0is0lX9Ty&sig=a3k7JR3yxdw9cBQtQg4_nQVnBrM#v=onepage&q=hyrel&f=false Use of a Lignin-Based Admixture for Tailoring the Rheological Properties of Mortars for 3D Printing] by a team from various departments of the [https://www.nrel.gov/ National Renewable Energy Laboratory]
* [https://www.sciencedirect.com/science/article/abs/pii/S0378517324008615 Development of Mucoadhesive 3D-printed Carbopol/eudragit/snac Tablets for the Oral Delivery of Enoxaparin: in Vitro and Ex Vivo Evaluation] by a team from [https://www.auth.gr/en/school/pharm-en/ School of Pharmacy, Aristotle University of Thessaloniki], [https://kedek.auth.gr/en/homepage-eng/ Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Thessaloniki], [https://uoi.gr/en/departments/department-of-biological-applications-and-technology/ Department of Biological Applications and Technologies, University of Ioannina], [https://www.unic.ac.cy/school-of-life-and-health-sciences/ School of Life and Health Sciences, University of Nicosia], [https://www.ihu.gr/en/enhome International Hellenic University], and [https://www.chemistry.uoc.gr/wordpress/en/home-2/ Department of Chemistry, University of Crete]
* [https://www.sciencedirect.com/science/article/abs/pii/S0272884224037519 Printing Resolution Effect on Mechanical Properties of Porous Boehmite Direct Ink 3D Printed Structures] by a team from [http://www.metal.iitkgp.ac.in/ Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur] and [https://reports.shell.com/investors-handbook/2016/projects-technology/in-focus-shell-technology-centre-bangalore.html Shell Technology Centre Bangalore]
* [https://jppres.com/jppres/pdf/vol13/jppres24.2016_13.1.115.pdf Semi-solid Extrusion 3d Printing of Plant-origin Rosmarinic Acid Loaded in Aqueous Polyethylene Oxide Gels] by a team from [https://ut.ee/en/institute-pharmacy Institute of Pharmacy, University of Tartu], [https://en.nuph.edu.ua/ National University of Pharmacy, Kharkiv], [https://kymu.edu.ua/en/ Kyiv International University], and [https://curifylabs.com/ CurifyLabs Oy, Helsinki]
* [https://arxiv.org/pdf/2408.04800 A High-Temperature Thermocouple Development by Additive Manufacturing: Tungsten-Nickel (W-Ni) and Molybdenum (Mo) Integration with Ceramic Structures] by a team from [https://ysu.edu/center-for-innovation-in-additive-manufacturing Advanced Manufacturing Research Center, Youngstown State University]
* [https://www.sciencedirect.com/science/article/abs/pii/S001021802400302X#preview-section-snippets The Influence of Heat Feedback and Thermal Conductivity on the Burn Rate of Thermite Composites] by a team from [https://www.ucr.edu/ University of California, Riverside]
* [https://www.proquest.com/openview/bcdee9005967fc5aa3952c2ff0bcbe14/1?pq-origsite=gscholar&cbl=18750&diss=y Direct Ink Writing Of PVDF/PEG/CA Composite Based Water Treatment Membranes], a Master's thesis presented to [https://www.asu.edu/ Arizona State University]
* [https://www.sciencedirect.com/science/article/abs/pii/S0167577X2401317X On-demand Release of Fucoidan From 3d-printed Cardiac Scaffolds Based on Chitosan/silk Fibroin/polyaniline] by a team from [https://nbuam.marmara.edu.tr/en Center for Nanotechnology & Biomaterials Application and Research (NBUAM), Marmara University, Turkey] and [https://bio.ui.ac.ir/en Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran]
* [https://www.sciencedirect.com/science/article/abs/pii/S2405829724004963 Machine Learning–Enabled Direct Ink Writing of Conductive Polymer Composites for Enhanced Performance in Thermal Management and Current Protection] by a team from multiple departments at both [https://www.uga.edu University of Georgia] and [https://www.asu.edu Arizona State University]
* [https://asmedigitalcollection.asme.org/micronanomanufacturing/article/doi/10.1115/1.4065964/1201675/Harnessing-Fly-Ash-as-Particle-Reinforcement-in Harnessing Fly Ash as Particle Reinforcement in Nature-Inspired Multilayer Composites] by a team from [https://www.deakin.edu.au/ifm Institute for Frontier Materials, Deakin University], [https://diat.ac.in/ Additive Manufacturing Laboratory, Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology, India], and [https://www.cipet.gov.in/centres/cipet-kochi/introduction.php CIPET-Institute of Petrochemicals Technology, India]
* [https://www.sciencedirect.com/science/article/abs/pii/S0141813024046713 Copper Nanoparticles Loaded Gelatin/ Polyvinyl Alcohol/ Guar Gum-based 3d Printable Multimaterial Hydrogel for Tissue Engineering Applications] by a team from the [https://mech.iittp.ac.in/ Department of Mechanical Engineering, Indian Institute of Technology, Tirupati] and the [https://svimstpt.ap.nic.in/Biotechnology.html Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati]
* [https://iopscience.iop.org/article/10.1149/2754-2726/ad23df Field Testing of a Mixed Potential IoT Sensor Platform for Methane Quantification] by a team from the [https://www.unm.edu University of New Mexico] and [https://www.sensorcommtech.com SensorComm Technologies, Inc.]
* [https://www.preprints.org/manuscript/202406.1591/download/final_file German Chamomile (Matricaria chamomilla L.) Flowers Extract, Its Amino Acids Preparations and 3D-Printed Dosage Forms: Phytochemical, Pharmacological, Technological and Molecular Docking Study] by a team from [https://ut.ee/en/institute-pharmacy Institute of Pharmacy, Faculty of Medicine, University of Tartu,], [https://en.nuph.edu.ua/ National University of Pharmacy, Kharkiv, Ukraine], [https://lsmu.lt/en/about-lsmu/structure/medical-academy/faculty-of-pharmacy/institute-of-pharmaceutical-technologies/ Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Kaunas], [https://lifechemicals.com/the-company/contacts/contacts-eu/ Life Chemicals Inc., Kyiv, Ukraine], and [https://int.mphu.edu.ua/ Zaporizhzhia State Medical and Pharmaceutical University, Zaporizhzhia, Ukraine]
* [https://pubs.rsc.org/en/content/articlehtml/2024/ma/d4ma00137k Direct Ink Writing of Porous Shape Memory Polyesters] by a team from [https://www.tamu.edu/ Texas A&M University]'s departments of [https://engineering.tamu.edu/materials/index.html Department of Materials Science and Engineering], [https://engineering.tamu.edu/biomedical/index.html Biomedical Engineering], and [Chemistry https://www.chem.tamu.edu/]
* [https://www.sciencedirect.com/science/article/abs/pii/S0926669024009543 Synthesis and Characterization of SiO2 Nanoparticles Reinforced 3D Printable Gelatin/pva/guar Gum/ Hydroxypropyl Methylcellulose-based Biocomposite Hydrogel] by a team from [https://mech.iittp.ac.in/ Department of Mechanical Engineering, Indian Institute of Technology, Tirupati]
* [https://onlinelibrary.wiley.com/doi/pdf/10.1002/adem.202401130 The Effects of Shear Stress on the Micromechanical Properties of 3D Printable Biopolymer Nanocomposites Using a Custom-Designed Extrusion-Based 3D Printer] by a team from [https://uwaterloo.ca/ University of Waterloo]'s departments of [https://uwaterloo.ca/systems-design-engineering/ Systems Design Engineering] and [https://uwaterloo.ca/mechanical-mechatronics-engineering/ Department of Mechanical and Mechatronics Engineering]
* [https://iopscience.iop.org/article/10.1088/1748-605X/ad565d/pdf Whey Protein-loaded 3d-printed Poly (Lactic) Acid Scaffolds for Wound Dressing Applications] by a team from [https://www.marmara.edu.tr/en Marmara University, Turkey] and [https://www.ucl.ac.uk/ University College, London]
* [https://pubs.acs.org/doi/abs/10.1021/acsaelm.4c00646 Development of Inks with Fillers of NbS3 Quasi-One-Dimensional Charge-Density-Wave Material] by a team from [https://www.ucla.edu/ University of California, Los Angeles], [https://www.uga.edu/ University of Georgia], and [https://www.auburn.edu/ Auburn University]
* [https://etda.libraries.psu.edu/files/final_submissions/29968 Dispersion and Stability Studies for Development of Ceramic Paste for Direct Ink Writing], a Master's thesis submitted to [https://www.matse.psu.edu/ Pennsylvania State University's Department of Materials Science and Engineering]
* [https://www.sciencedirect.com/science/article/abs/pii/S2214860424002434 Electrothermal Free-form Additive Manufacturing of Thermosets] by a team from [https://www.tamu.edu Texas A&M University]'s [https://engineering.tamu.edu/chemical Department of Chemical Engineering] and [https://engineering.tamu.edu/materials Department of Materials Science & Engineering], and from [https://www.a-star.edu.sg/simtech Singapore Institute of Manufacturing Technology (SIMTech), Agency for Science, Technology and Research (A⁎STAR)]
* [https://pubs.acs.org/doi/full/10.1021/acsaenm.4c00126 Ink-Based Additive Manufacturing of a Polymer/Coal Composite: A Non-Traditional Reinforcement] by a team from [https://www.asu.edu/ Arizona State University], [https://www.uga.edu/ University of Georgia], and [https://www.hesam.eu/ HESAM Universite, France]
* [https://www.sciencedirect.com/science/article/abs/pii/S0007850624000738 Upflow Mitigation Strategy for Nested Printing] by a team from the [https://www.ufl.edu/ University of Florida]'s Departments of [https://mae.ufl.edu/ Mechanical and Aerospace Engineering] and [https://www.ise.ufl.edu/ Industrial and Systems Engineering]
* [https://pubs.acs.org/doi/full/10.1021/acsami.4c02466 Enhancing Electrical Conductivity of Stretchable Liquid Metal–Silver Composites through Direct Ink Writing] by a team from the [https://bartlett.me.vt.edu/ Mechanical Engineering, Soft Materials and Structures Lab, Virginia Tech]
* [https://www.sciencedirect.com/science/article/abs/pii/S0141813024026461 Design and in Vitro Evaluation of Curcumin-loaded Plga Nanoparticle Embedded Sodium Alginate/gelatin 3D Printed Scaffolds for Alzheimer's Disease] by a team from [https://www.marmara.edu.tr/en Marmara University], [https://www.ucl.ac.uk/ University College London], [https://www.cubeincubation.com/en/our-initiatives Cube Incubation, Turkey], [Istanbul Kent University Istanbul Kent University], [https://www.cumhuriyet.edu.tr/ Cumhuriyet University], [University of Health Science and Pharmacy in St. Louis University of Health Science and Pharmacy in St. Louis], and [https://www.ua.pt/en/ University of Aveiro]
* [http://ysjskxygc.xml-journal.net/en/article/pdf/preview/10.13264/j.cnki.ysjskx.2024.01.010.pdf Rheological Properties of SiC Suspension for Direct Ink Writing] by a team from [https://en.csu.edu.cn/ Central South University, China]
* [https://pubs.acs.org/doi/abs/10.1021/acsabm.3c01088 Enhancing Extracellular Electron Transfer of a 3D-Printed Shewanella Bioanode with Riboflavin-Modified Carbon Black Bioink] by a team from [https://www.zju.edu.cn/english/ Zhejiang University, China]
* [https://www.nature.com/articles/s41467-024-47452-9 Vapor-induced Phase-separation-enabled Versatile Direct Ink Writing] by a team from [https://www.ufl.edu/ University of Florida], [https://sc.edu/ University of South Carolina], and [https://www.zju.edu.cn/english/ Zhejiang University, China]
* [https://www.sciencedirect.com/science/article/abs/pii/S0955221924003121 3D-Printed Photocatalytic Scaffolds of BiVO4 by Direct Ink Writing for Acetaminophen Mineralization] by a team from [https://cimav.edu.mx/investigacion/subsede-monterrey/ Centro de Investigación en Materiales Avanzados S.C. (CIMAV-Subsede Monterrey), Mexico], Nano & Micro Additive Manufacturing of Polymers and Composite Materials Laboratory ‘‘3D LAB’’. Advanced Functional Materials & Nanotechnology Group, and [https://www.uanl.mx/dependencias/facultad-de-ingenieria-mecanica-y-electrica/ Universidad Autónoma de Nuevo León, Facultad de Ingeniería Mecánica y Eléctrica, San Nicolás de los Garza, Nuevo León, Mexico]
* [https://doi.org/10.1002/adma.202401140 Fast and Slow-Twitch Actuation via Twisted Liquid Crystal Elastomer Fibers] presented at the [https://www.grc.org/ Gordon Research Conferences (GRC)]
* [https://www.sciencedirect.com/science/article/pii/S1751616124001310 The Effect of Triglycerol Diacrylate on the Printability and Properties of UV Curable, Bio-based Nanohydroxyapatite Composites] by a team from the [ University of Waterloo, Canada]'s [https://uwaterloo.ca/waterloo-composite-biomaterial-systems-lab/ Composite Biomaterial Systems Laboratory] and [https://uwaterloo.ca/bioengineering-biotechnology/ Material Interaction with Biological Systems Laboratory]
* [https://www.mdpi.com/2223-7747/13/6/754 Eucalypt Extracts Prepared by a No-Waste Method and Their 3D-Printed Dosage Forms Show Antimicrobial and Anti-Inflammatory Activity] by a team from [https://ut.ee/en/institute-pharmacy Institute of Pharmacy, Faculty of Medicine, University of Tartu, Estonia], [https://en.nuph.edu.ua/ Pharmacognosy Department, The National University of Pharmacy (Ukraine)], [https://www.imiamn.org.ua/indexEN.html I.Mechnikov Institute of Microbiology and Immunology, National Academy of Medical Sciences of Ukraine], [https://ut.ee/en/department-microbiology Department of Microbiology, Institute of Biomedicine and Translational Medicine, Faculty of Medicine, University of Tartu, Estonia], and [https://biomeditsiin.ut.ee/en/content/department-microbiology Laboratory of Clinical Microbiology, United Laboratories, Tartu University Hospital, Estonia]
* [https://www.nature.com/articles/s41467-024-46532-0 3D Printing by Stereolithography Using Thermal Initiators] by a team from the [https://chemistry.huji.ac.il/ Institute of Chemistry, Hebrew University of Jerusalem]
* [https://www.science.org/doi/full/10.1126/sciadv.adk3250 Three-dimensional Printing of Wood] by a team from [https://www.ornl.gov/ Oak Ridge National Laboratory]
* [https://pubs.acs.org/doi/full/10.1021/acsomega.4c00386 Additively Manufactured Silicone Polymer Composite with High Hydrogen Getter Content and Hydrogen Absorption Capacity] by a team from [https://lanl.gov Los Alamos National Laboratory]'s [https://organizations.lanl.gov/cels/chemistry/chemical-diagnostics-engineering/ Chemical Diagnostics and Engineering Group] and [https://organizations.lanl.gov/physical-sciences/sigma/fabrication-manufacturing-sciences/ Fabrication Manufacturing Science Group]
* [https://www.sciencedirect.com/science/article/abs/pii/S0260877424000980#preview-section-snippets Modulating the 3D Printability of Vitamin D3-nanoemulsion-based Dairy Gels: Influence of Emulsifier on Gel Structure, Printing Behaviour and Vitamin D3 Retention] by a team from the [https://crdt.iitd.ac.in/ Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi] and [https://agriculture-food-sustainability.uq.edu.au/ School of Agriculture and Food Sciences, The University of Queensland]
* [https://www.preprints.org/manuscript/202402.1033/v1 The Eucalypt Extracts Prepared by a Non-wasting Method and Their 3D-Printed Dosage Forms With an Antimicrobial and Anti-inflammatory Activity] by a team from the [https://ut.ee/en/institute-pharmacy Institute of Pharmacy, Faculty of Medicine, University of Tartu], the  [https://en.nuph.edu.ua/ Pharmacognosy department, The National University of Pharmacy, Ukraine], the [http://www.imiamn.org.ua/indexEN.html I. Mechnikov Institute of Microbiology and Immunology. National Academy of Medical Sciences of Ukraine], the [https://biomeditsiin.ut.ee/en/esileht-bio-ja-siirdemeditsiin-instituut Department of Microbiology, Institute of Biomedicine and Translational Medicine, Faculty of Medicine, University of Tartu], and the [https://biomeditsiin.ut.ee/en/content/department-microbiology Laboratory of Clinical Microbiology, United Laboratories, Tartu University Hospital]
* [https://onlinelibrary.wiley.com/doi/pdf/10.1002/aenm.202304287 High-Throughput Ammonia Production from Nitrate Using Liquid Metal Synthesized Bismuth Nano-Catalyst] by a team from the [https://www.crpp.cnrs.fr/en/home-page/ Centre de Recherche Paul Pascal−CNRS, University of Bordeaux], [https://www.sydney.edu.au/engineering/schools/school-of-chemical-and-biomolecular-engineering.html School of Chemical and Biomolecular Engineering, The University of Sydney], and the Schools of [https://www.unsw.edu.au/engineering/our-schools/chemical-engineering Chemical Engineering] and [https://www.unsw.edu.au/engineering/our-schools/biomedical-engineering Biomedical Engineering] of the [https://www.unsw.edu.au/ University of New South Wales (UNSW)]
* [https://onlinelibrary.wiley.com/doi/pdf/10.1002/app.55236 Boron-polymer Composites Engineered for Compression Molding, Foaming, and Additive Manufacturing] by a team from [https://www.lanl.gov/ Los Alamos National Laboratory]
* [https://scholarworks.utep.edu/cgi/viewcontent.cgi?article=4991&context=open_etd Design and Customization of 3D Printers for Advanced Materials Printing], a Master's Thesis submitted to the [https://www.utep.edu/ University of Texas at El Paso]
* [https://www.mdpi.com/2079-6374/14/1/56 Sensing Levofloxacin with an RNA Aptamer as a Bioreceptor] by a team from the [https://www.tu-darmstadt.de/index.en.jsp Technical University of Darmstadt]
* [https://www.sciencedirect.com/science/article/abs/pii/S0963996924001054 Influence of Starch-protein Interactions on the Digestibility and Chemical Properties of a 3D-printed Food Matrix Based on Salmon by-product Proteins] by a team from the [https://www.ubiobio.cl/ Universidad del Bío-Bío, Chile]
* [https://www.sciencedirect.com/science/article/abs/pii/S0014305723009199 Designing Advanced Hydrogel Inks With Direct Ink Writing Based 3d Printability for Engineered Biostructures] by a team from [https://www.iitmandi.ac.in/schoolpage.php?id=SCS School of Chemical Sciences, Indian Institute of Technology Mandi] and [https://homep.yu.ac.kr/en/academic/index.php?c=academic_01_c_10 School of Chemical Engineering, Yeungnam University]


== DIW/SEP/SSE, 2023 ==
== DIW/SEP/SSE, 2023 ==

Revision as of 09:36, 4 October 2024

Below is a list of published works citing Hyrel equipment.

Count

486 documents as of 8 December, 2023.

Non-Traditional Manufacturing (NTM)

Including:

  • Antennas
  • Sensors
  • Inductors
  • Circuits
  • Electro-Spinning
  • Electro-Melt-Spinning
  • Melt Electro-Writing (MEW)
  • 4D Printing
  • Shape Memory Polymers
  • Nanostructures
  • Micro-Encapsulated Phase-Changing Materials (MEPCM)
  • Printing with Embedded Fibers
  • And combining two or more additive manufacturing methods in a single build.

NTM, 2024

NTM, 2023

NTM, 2022

NTM, 2021

NTM, 2020

NTM, 2019

NTM, 2018

NTM, 2017

NTM, 2016

NTM, 2015

Unheated or Chilled Reservoir Printing (DIW, SEP, SSE, 3DCP, DCC)

Also known as Robocasting or DIW (Direct Ink Writing), SEP (Semisolid Extrusion Printing), SSE (Semisolid Extrusion). 3DCP' (3D Concrete Printing), or DCC (Digital Concrete Construction).

DIW/SEP/SSE, 2024

DIW/SEP/SSE, 2023

DIW/SEP/SSE, 2022

DIW/SEP/SSE, 2021

DIW/SEP/SSE, 2020

DIW/SEP/SSE, 2019

DIW/SEP/SSE, 2018

DIW/SEP/SSE, 2017

DIW/SEP/SSE, 2016

DIW/SEP/SSE, 2015

DIW/SEP/SSE, 2014

Heated Reservoir Printing (DPE, HME)

Also known as DPE (Direct Powder Extrusion) or HME (Hot Melt Extrusion).

DPE, HME 2023

DPE, HME 2022

DPE, HME 2021

DPE, HME 2020

DPE, HME 2019

DPE, HME 2018

DPE, HME 2017

Filament Printing (FFF, FDM)

Also known as FFF (Fused Filament Fabrication) or FDM (Fused Deposition Modeling).

FDM/HFF, 2023

FDM/HFF, 2022

FDM/HFF, 2021

FDM/HFF, 2020

FDM/HFF, 2019

FDM/HFF, 2018

FDM/HFF, 2017

FDM/HFF, 2016