Difference between revisions of "Published Papers"

From Hyrel3D
Jump to navigation Jump to search
Line 27: Line 27:
*[http://hyrel3d.net/papers/3D-4D_Printing_and_Stretchable_Conductive_Adhesives.pdf A Novel Approach to Integrating 3D/4D Printing and Stretchable Conductive Adhesive Technologies for High Frequency Packaging Applications]
*[http://hyrel3d.net/papers/3D-4D_Printing_and_Stretchable_Conductive_Adhesives.pdf A Novel Approach to Integrating 3D/4D Printing and Stretchable Conductive Adhesive Technologies for High Frequency Packaging Applications]
*[http://hyrel3d.net/papers/Additive_Manufacturing_of_Planar_Inductor.pdf Additive Manufacturing of Planar Inductor for Power Electronics Applications]
*[http://hyrel3d.net/papers/Additive_Manufacturing_of_Planar_Inductor.pdf Additive Manufacturing of Planar Inductor for Power Electronics Applications]
*[http://pubs.acs.org/doi/abs/10.1021/nn507488s Bioactive Nanoengineered Hydrogels for Bone Tissue Engineering: A Growth-Factor-Free Approach] in [http://www.acs.org/content/acs/en.html The American Chemical Society's] [http://pubs.acs.org/journal/ancac3 ACS Nano]
*[http://hyrel3d.net/papers/3D_Printed_Scaffolds_to_Repair_Large_Bone_Deficits.pdf Design and Fabrication of 3D Printed Scaffolds with a Mechanical Strength Comparable to Cortical Bone to Repair Large Bone Defects] in [http://www.nature.com/index.html Nature.com's] [http://www.nature.com/srep/ Scientific Reports]
*[http://hyrel3d.net/papers/3D_Printed_Scaffolds_to_Repair_Large_Bone_Deficits.pdf Design and Fabrication of 3D Printed Scaffolds with a Mechanical Strength Comparable to Cortical Bone to Repair Large Bone Defects] in [http://www.nature.com/index.html Nature.com's] [http://www.nature.com/srep/ Scientific Reports]
*[http://hyrel3d.net/papers/Eumlsion_Inks_for_3D_Printing.pdf Emulsion Inks for 3D Printing of High Porosity Materials] in the [http://www.frontiersin.org/10.3389/conf.FBIOE.2016.01.02721/2893/10th_World_Biomaterials_Congress/all_events/event_abstract Macromolecular Journals]
*[http://hyrel3d.net/papers/Eumlsion_Inks_for_3D_Printing.pdf Emulsion Inks for 3D Printing of High Porosity Materials] in the [http://www.frontiersin.org/10.3389/conf.FBIOE.2016.01.02721/2893/10th_World_Biomaterials_Congress/all_events/event_abstract Macromolecular Journals]
* 2015
*[http://pubs.acs.org/doi/abs/10.1021/nn507488s Bioactive Nanoengineered Hydrogels for Bone Tissue Engineering: A Growth-Factor-Free Approach] in [http://www.acs.org/content/acs/en.html The American Chemical Society's] [http://pubs.acs.org/journal/ancac3 ACS Nano]


=== '''Research Video''' Citing [[Cold_and_Warm_Flow|Hyrel Cold Flow]] ===
=== '''Research Video''' Citing [[Cold_and_Warm_Flow|Hyrel Cold Flow]] ===

Revision as of 12:49, 10 April 2018

Below is a list of research works citing Hyrel equipment.

Research Papers Citing Hyrel Cold Flow

Research Video Citing Hyrel Cold Flow

Research Papers Citing Hyrel Warm Flow

Research Papers Citing Hyrel Hot Flow