Category:Hot Flow
Hot Flow is our term for filament-based materials which are deposited at up to 450°C, depending on the head. As of January, 2016, our Hot Flow heads are only for 1.75mm filaments.
Materials for Hot Flow
The following materials can be printed from Hot Flow heads. Note that depending on the characteristics of your material, one head will be a better match than the others. See the "Recommended For" column in the table below.
- ABS, Acrylonitrile Butadiene Styrene
- BendLay
- FilaFlex
- Flex45
- LayBrick
- LayWood
- NinjaFlex
- Nylon
- PC, PolyCarbonate
- PEEK, PolyEther Ether Ketone
- PET, PolyEthylene Terephthalate
- PETG, PolyEthylene Terephthalate Glycol-modified
- PLA, PolyLactic Acid
- PlastInk Rubber
- PP, PolyPropylene
- PVA, PolyVinyl Alcohol
- T-Glase
Heads for Hot Flow
Hot Flow is available through the following heads:
The following table compares the properties of the various Hot Flow heads, including which heads are recommended for which materials. The MK1 heads drive matieral from one side, with a spring-loaded bearing system to maintain pressure and positioning. The MK2 heads drive the material from both sides, and are designed for more flexible filaments.
Head | Min Temp | Max Temp | Filament Type | Nozzle | Recommended For |
---|---|---|---|---|---|
MK1-250 | 150°C | 250°C | Standard | .35mm, .50mm, .75mm, 1.0mm | ABS, LayBrick, LayWood, Nylon PC, PET, PETG, PETT, PLA, PP, PVA, T-Glase |
MK2-250 | 150°C | 250°C | Flexible | .35mm, .50mm, .75mm, 1.0mm | BendLay, FilaFlex, Flex45, NinjaFlex, PlastInk Rubber |
MK1-450 | 250°C | 450°C | Engineering | .50mm | PC, PEEK |
Research Papers Citing Hyrel Hot Flow
- Demonstration and Characterization of Fully 3D-printed RF Structures, The Institute of Electrical and Electronics Engineers, Incorporated (IEEE)
- Infill Dependent 3D-Printed Material Based on NinjaFlex Filament for Antenna Applications, The Institute of Electrical and Electronics Engineers, Incorporated (IEEE)
- A Novel Strain Sensor Based on 3D Printing Technology and 3D Antenna Design, The Institute of Electrical and Electronics Engineers, Incorporated (IEEE)
- A Novel 3-D Printed Loop Antenna Using Flexible NinjaFlex Material for Wearable and IoT Applications, The Institute of Electrical and Electronics Engineers, Incorporated (IEEE)
- RF Characterization of 3D Printed Flexible Materials - NinjaFlex Filaments, The European Microwave Association (EuMA)